Signaling

14.12 Game Theory

Road map

- 1. Signaling games review
 - 1. Pooling equilibrium
 - 2. Separating equilibrium
 - 3. Mixed
- 2. Job-market signaling (short, time permitting)
- 3. Review
- 4. Evaluations

Signaling Games

Signaling Game -- Definition

- Two Players: (S)ender, (R)eceiver
- 1. Nature selects a type t_i from $T = \{t_1,...,t_I\}$ with probability $p(t_i)$;
- 2. Sender observes t_i , and then chooses a message m_i from $M = \{m_1, ..., m_I\}$;
- 3. Receiver observes m_j (but not t_i), and then chooses an action a_k from $A = \{a_1, ..., a_K\}$;
- 4. Payoffs are $U_S(t_i,m_j,a_k)$ and $U_R(t_i,m_j,a_k)$.

Types of Equilibria

- A pooling equilibrium is an equilibrium in which all types of sender send the same message.
- A **separating equilibrium** is an equilibrium in which all types of sender send different messages.
- A partially separating/pooling equilibrium is an equilibrium in which some types of sender send the same message, while some others sends some other messages.

Job Market Signaling

Model

- A worker
 - with ability t = H or t = L (his private information)
 Pr(t = H) = q,
 - obtains an observable education level e,
 - incurring cost c(t,e) where c(H,e) < c(L,e), and
 - finds a job with wage w(e), where he
 - produces y(t,e).
- Firms compete for the worker: in equilibrium, $w(e) = \mu(H|e)y(H,e) + (1-\mu(H|e))y(L,e)$.

Equilibrium

 $(e_H, e_L, w(e), \mu(H|e))$ where

- $e_t = \operatorname{argmax}_e w(e) c(t,e)$ for each t;
- $w(e) = \mu(H|e)y(H,e) + (1-\mu(H|e))y(L,e);$

$$qPr(e_H = e)$$

• $\mu(H|e) = \frac{}{qPr(e_H = e) + (1-q)Pr(e_L = e)}$

whenever well-defined.

