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Abstract: So far, we have considered a variety of measures for serial dependence and
have focused on their probabilistic properties. How these measures can be consistently
estimated has not been considered. We will introduce some popular nonparametric
methods (particularly the kernel smoothing method) to estimate functions of interest,
such as probability density functions, autoregression functions, power spectral density
functions, and generalized spectral density functions. Empirical applications of these
functions crucially depend on the consistent estimation of these functions. We will dis-
cuss the large sample statistical properties of kernel-based estimators in various contexts.

Key words: Smoothing, Taylor series expansion, density function, generalized spectral
density, local polynomial smoothing, kernel method, regression function, spectral density
References:

Nonparametric Methods in Time Domain

Silverman, B. (1986): Nonparametric Density Estimation and Data Analysis. Chapman
and Hall: London.
Hardle, W. (1990): Applied Nonparametric Regression. Cambridge University Press:
Cambridge.
Fan, J. and Q. Yao (2003), Nonlinear Time Series: Parametric and Nonparametric
Methods, Springer: New York.

Nonparametric Methods in Frequency Domain

Priestley, M. (1981), Spectral Analysis and Time Series. Academic Press: New York.
Hannan, E. (1970), Multiple Time Series, John Wiley: New York.

Questions: Suppose fXtg is a strictly stationary process with marginal probability
density function g(x) and pairwise joint probability density function fj(x; y): Suppose a
random sample fXtgTt=1 of size T is available.

� How to estimate the marginal pdf g(x) of fXtg?

� How to estimate the pairwise joint pdf fj(x; y) of (Xt; Xt�j)?

� How to estimate the autoregression function rj(x) = E(XtjXt�j = x)?
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� How to estimate the power spectrum h(!) of fXtg?

� How to estimate the generalized spectral density f(!; u; v) of fXtg?

� How to estimate the bispectral density b(!1; !2)?

� How to estimate a nonparametric nonlinear autoregressive conditional heteroskedas-
tic process

Xt = �(Xt�1; :::; Xt�p) + �(Xt�1; :::; Xt�q)"t; f"tg � i:i:d:(0; 1);

where �(�) and �(�) are unknown functions. Under certain regularity conditions,
�(�) is the conditional mean of Xt given It�1 = fXt�1; Xt�2; :::g and �2(�) is the
conditional variance of Xt given It�1.

� How to estimate a seminonparametric functional coe¢ cient autoregressive process

Xt =

pX
j=1

�j(Xt�d)Xt�j + "t; E("tjIt�1) = 0 a.s.,

where �j(�) is unknown, and d > 0 is a time lag parameter?

� How to estimate a nonparametric additive autoregressive process

Xt =

pX
j=1

�j(Xt�j) + "t; E("tjIt�1) = 0 a.s.,

where the �j(�) are unknown?

� How to use these estimators in economic and �nancial applications?

Remark: Nonparametric smoothing �rst arose from spectral density estimation in time
series. In a discussion of the seminal paper by Bartlett (1946), Henry E. Daniels sug-
gested that a possible improvement on spectral density estimation could be made by
smoothing the periodogram. The theory and techniques were then systematically de-
veloped by Bartlett (1948,1950). Thus, smoothing techniques were already prominently
featured in time series analysis more than half a century ago.

Remark: In the earlier stage of nonlinear time series analysis, focus was on various
nonlinear parametric forms. Recent interest has been mainly in nonparametric curve
estimation, which does not require the knowledge of the functional form beyond certain
smoothness conditions on the underlying function.

Question: Why is the nonparametric method popular in statistics and econometrics?
Answer:
(i) Demands for nonlinear approaches;
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(ii) Availability of large data sets;
(iii) Advance in computer technology.

Granger (1999): The speed in computing technology increases much faster than the

speed at which data grows.

1 Motivation

To get basic ideas about nonparametric smoothing methods, we �rst consider two ex-
amples, one is for estimation of the regression function, and the other is for estimation
of the probability density function.

Motivating example 1 [regression function]

For simplicity, we consider r1(x) = E(XtjXt�1 = x): We write

Xt = r1(Xt�1) + "t;

where E("tjXt�1) = 0 a.s. by construction. We assume E(X2
t ) <1:

Suppose a sequence of bases f j(x)g constitutes a complete orthonormal basis for
the space of square-integrable functions. Then we can always decompose

r1(x) =
1X
j=0

�j j(x);

where the Fourier coe¢ cient

�j =

Z
r1(x) j(x)dx;

which is the projection of r1(x) on the base function  j(x):

Example 1: Suppose r1(x) = x2 where x 2 [��; �]: Then

r1(x) =
�2

3
� 4

�
cos(x)� cos(2x)

22
+
cos(3x)

32
� � � �

�
=

�2

3
� 4

1X
j=1

(�1)j�1 cos(jx)
j2

:

Example 2: Suppose

r1(x) =

8<:
�1 if � � < x < 0;
0 if x = 0;
1 if 0 < x < �:
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Then

r1(x) =
4

�

�
sin(x) +

sin(3x)

3
+
sin(5x)

5
+ � � �

�
=

4

�

1X
j=0

sin[(2j + 1)x]

(2j + 1)
:

Because r1(x) is square-integrable, we haveZ
r21(x)dx =

1X
j=0

1X
k=0

�j�k

Z
 j(x) k(x)dx

=

1X
j=0

1X
k=0

�j�k�j;k by orthonormality

=
1X
j=0

�2j <1;

where �j;k = 1 if j = k and 0 otherwise.

Remark: �j ! 0 as j ! 1: That is, �j becomes less important as the order j grows
to in�nity.

This suggests that a truncated sum

r1p(x) =

pX
j=0

�j j(x)

can approximate r1(x) arbitrarily well if p is su¢ ciently large. The approximation error,
or the bias,

bp(x) � r1(x)� r1p(x)

=

1X
j=p+1

�j j(x)

! 0

as p!1:

Di¢ culty: However, the coe¢ cient �j is unknown.

To obtain a feasible estimator for r1(x); we consider the following sequence of regres-
sion models

Xt =

pX
j=0

�j j(Xt�1) + "pt;
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where p � p(T ) is the number of series terms that depends on the sample size T: We
need p=T goes to 0. Note that "pt is not the same as the true error "t for each given p:
Instead, it contains the true error "t and the bias bp(Xt):
The ordinary least squares estimator

�̂ = [	0	]�1	0X

=

 
TX
t=2

 t 
0
t

!�1 TX
t=2

 tXt;

where 	 = ( 01; :::;  
0
T )
0 is a T � p matrix, and  t = [ 0(Xt�1);  1(Xt�1); :::;  p(Xt�1)]

0

is a p� 1 vector. The series-based regression estimator

r̂1p(x) =

pX
j=0

�̂j j(x):

To ensure that r̂1p(x) is asymptotically unbiased, we must let p = p(T )!1 as T !1
(e.g., p =

p
T ): However, if p is too large, the number of estimated parameters will

be too large, and as a consequence, the sampling variation of �̂ will be large (i.e., the
estimator �̂ is imprecise.) We must choose an appropriate p = P (T ) so as to balance
the bias and the sampling variation.

Remark: f j(�)g can be the Fourier series, i.e., the sin and cosine functions. See (e.g.)
Andrews (1991, Econometrica), Hong and White (1995, Econometrica).

Motivating Example 2 [Probability Density Function]: Suppose the pdf g(x) of
Xt is a smooth function. We can expand

g(x) = �(x)
1X
j=0

�jHj(x);

where �(x) = (2�)�1=2 exp(�1
2
x2) is the N(0; 1) density, and fHj(x)g is the sequence of

Hermite polynomials, de�ned as

(�1)j d
j

dxj
�(x) = �Hj�1(x)�(x) for j > 0;

where �(�) is the N(0,1) CDF. For example,

H0(x) = 1;

H1(x) = x;

H2(x) = (x2 � 1)
H3(x) = x(x2 � 3);
H4(x) = x4 � 6x2 + 3:

See, for example, Magnus, Oberhettinger and Soni (1966, Section 5.6) and Abramowitz
and Stegun (1972, Ch.22).
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Here, the Fourier coe¢ cient

�j =

Z 1

�1
g(x)Hj(x)�(x)dx:

Again, �j ! 0 as j !1 given
P1

j=0 �
2
j <1:

Remark: The N(0,1) pdf �(x) is the leading term to approximate the unknown density
g(x), and the Hermite polynomial series will capture departures from normality (e.g.,
skewness and heavy tails).
To estimate g(x); we can consider the sequence of truncated densities

gp(x) = C�1(p)�(x)

pX
j=0

�jHj(x);

where the constant

C(p) =

pX
j=0

�j

Z
Hj(x)�(x)dx

is a normalization factor to ensure that gp(x) is a pdf for each p: The unknown parameters
f�jg can be estimated from the sample fXtgTt=1 via the maximum likelihood estimation
(MLE) method. Suppose fXtg is an i.i.d. sample. Then

�̂ = argmax
�

TX
t=1

log ĝp(Xt)

To ensure that ĝp(x) = Ĉ(p)�(x)�pj=0�̂jHj(x) is asymptotically unbiased, we must let
p = p(T )!1 as T !1: However, p must grow slowly so that the sampling variation
of �̂ will not be too large.

Remark: For the use of Hermite Polynomial series expansions, see (e.g.) Gallant and
Tauchen (1996, Econometric Theory) and Ait-Sahalia (2002, Econometrica).

Question: What is the advantage of nonparametric estimation methods?

They require few assumptions or restrictions on the data generating process. In par-
ticularly, they do not assume a speci�c functional form for the function of interest (of
course certain smoothness condition such as di¤erentiability is required). They can de-
liver a consistent estimator for the unknown function, no matter it is linear or nonlinear.
Thus, nonparametric methods can reduce potential systematic biases which are more
likely to encounter in parametric models.

Question: What is the disadvantage of nonparametric methods?

(i) They require a large data set for reasonable estimation. There exists a problem
of �curse of dimensionality�, which will be explained below.
(ii) Coe¢ cients are usually di¢ cult to interpret from an economic point of view;
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(iii) There exists a danger of potential over�tting.

Remark: The two motivating examples are the so-called orthogonal series expansion
methods. There are many other nonparametric methods, such as kernel methods and
local polynomials methods. Series expansion methods are called global smoothing
methods, because the coe¢ cients are estimated using all observations, and they are
then used to evaluate the value of the underlying function at each point. In contrast,
kernel and local polynomial methods are called local smoothing methods, because
the estimation only requires the observations in a neighborhood of the point of interest.
Below we will mainly focus on kernel smoothing methods, due to its simplicity and
intuitive nature.

Remark: A nonparametric model is an increasing sequence of parametric models, as
the sample size T grows.

2 Kernel Density Method
2.1 Kernel estimation of g(x)

Basic Question: How to estimate the marginal pdf g(x) of Xt?

Parametric Approach: Suppose fXtg is a time series process with the same
marginal density function g(x): Assume that g(x) is a N(�; �2) pdf with unknown �
and �2: Then we know the functional form of g(x) up to two unknown parameters
� = (�; �2)0 :

g(xj�) = 1

(2��2)1=2
exp

�
� 1

2�2
(x� �)2

�
; �1 < x <1:

To estimate g(xj�); it su¢ ces to estimate � and �2:We can use the maximum likelihood
estimation (MLE) method:

�̂ = T�1
TX
t=1

Xt;

�̂2 = T�1
TX
t=1

(Xt � �̂)2:

Remark:
p
T (�̂ � �0) = OP (1); or �̂ � �0 = OP (T

�1=2); where �̂ = (�̂; �̂2)0 and �0 =
(�0; �

2
0)
0 is the true parameter:

Question: What is the de�nition of OP (�T )?

De�nition [Convergence in probability]: Let f�T ; T � 1g be a sequence of positive
numbers. A random variable YT is said to be of order �T in probability, written YT =
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OP (�T ); if the sequence fYT=�T ; T � 1g is tight, that is, if

lim
�!1

lim sup
T!1

P (jYT=�T j > �) = 0:

Tightness is usually indicated by writing YT=�T = OP (1):

Question: What is the advantage of the parametric approach?

By the mean-value theorem, we obtain

g(xj�̂)� g(x) = g(xj�0)� g(x)

+
@

@�
g(xj��)(�̂ � �0)

= approximation error (bias)

+ sampling error

= 0 +
1p
T

@

@�
g(xj��)

p
T (�̂ � �0)

= 0 +OP (T
�1=2)

= OP (T
�1=2):

Question: What happens if the Gaussianity assumption fail? That is, what happens if
g(xj�) 6= g(x) for all �?

Answer: g(xj�̂) will not be consistent for g(x) because the bias g(xj�) � g(x) never
vanishes, where � = p lim �̂:

Nonparametric Kernel Approach:

Basic idea of local smoothing: The purpose of nonparametric probability density
estimation is to construct an estimate of a probability density function without imposing
structural assumptions. Typically the only conditions imposed on the probability density
function are that it has at least two bounded derivatives. In this circumstance we may
use only local information about the value of the density at any given point. That is,
the value of the density of a point x must be calculated from data values that lie in
the neighborhood of x; and to ensure consistency the neighborhood must shrink as the
sample size increases. In the case of kernel-type density estimation, the radius of the
e¤ective neighborhood is roughly equal to the �bandwidth�or the smoothing parameter
of the estimator. Under the assumption that the density is univariate with at least two
bounded derivatives, and using a nonnegative kernel function, the size of bandwidth
that optimizes the performance of the estimator in the mean squared error criterion
is T�1=5: The number of �parameters�needed to model the unknown density within a
given interval is approximately equal to the number of bandwidths that can be �tted
into that interval, and so is roughly of size T 1=5: Thus, nonparametric density estimation
involves the adaptive �tting of approximately T 1=5 parameters, this number growing with
increasing n:
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There are two basic instruments in kernel estimation: the kernel function K(�) and
the bandwidth h. The former gives weighting to the observations in an interval contain-
ing the point x, and the latter controls the size of the interval containing observations.

2.1.1 Kernel Function

Kernel Function K(�) : A positive kernel function K(�) is a pre-speci�ed symmetric
pdf such that (i)

R1
�1K(u)du = 1; (ii)

R1
�1K(u)udu = 0; (iii)

R1
�1 u

2K(u)du = Ck <1;

(iv)
R1
�1K

2(u)du = Dk:

Remarks:
(i) K(�) is a weighting function that will �discount�the observations whose values

are more away from the point x that we are interested in.
(ii) The kernels satisfying the above condition are called a second order kernel or

positive kernel. More generally, we can de�ne a q-th order kernel K(�); where q � 2 :
K(�) satis�es the conditions that

R
K(u)du = 1;

R
ujK(u)du = 0 for 1 � j � q � 1;R

uqK(u)du <1 and
R
K2(u)du <1: For a higher order kernel (q > 2); K(�) will take

some negative values at some points. (Question: Why is a higher order kernel useful?
Can you give an example of a third order kernel?)

Examples of second order kernel K(�):

� Uniform kernel
K(u) =

1

2
1(juj � 1):

� Gaussian kernel

K(u) =
1p
2�
exp(�1

2
u2); �1 < u <1:

� Epanechnikov Kernel
K(u) =

3

4
(1� u2)1(juj � 1):

� Quatic kernel
K(x) =

15

16
(1� u2)21(juj � 1):

2.1.2 Consistency of the Kernel Density Estimator for g(x)

Question: How does the kernel method work?
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Given a pre-chosen kernel K(u); we can de�ne a kernel density estimator for g(x)
using fXtgTt=1 :

ĝ(x) = T�1
TX
t=1

Kh(x�Xt)

=
1

T

TX
t=1

1

h
K

�
x�Xt

h

�
=

1

h

Z 1

�1
K

�
x� y

h

�
dF̂ (y);

where Kh(u) = h�1K(u=h), h > 0 is called a bandwidth or a window size, and F̂ (y) =
T�1�Tt=11(Xt � t) is the empirical distribution function.

Example 1 [Histogram]: If K(u) = 1
2
1(juj � 1); then

ĝ(x) =
1

2hT

TX
t=1

1(jx�Xtj � h)

= the relative sample frequency of the observations

on the interval [x� h; x+ h]:

Remark: 2hT is approximately the sample size of the interval [x� h; x+ h]:

Question: Under what conditions will ĝ(x) be consistent for g(x)?

Assumption: (i) fXtg is a strictly stationary process with marginal pdf g(x): (ii) g(x)
has a support on [a; b] and is continuously twice di¤erentiable on [a; b]; with g00(�) being
Lipschitz-continuous in the sense that jg00(x1)�g00(x2)j � Cjx1�x2j for all x1; x2 2 [a; b]
and C <1.

Question: How to de�ne the derivatives at the boundary points?

Remark: By convention, the derivatives of g(�) at points a and b are

g0(a) = lim
x!0+

g(a+ x)� g(a)

x
;

g0(b) = lim
x!0�

g(b+ x)� g(b)

x
:

Similarly for g00(a) and g00(b):

For convenience, we further assume:

Assumption: K(u) has a bounded support on [�1; 1]:
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This is not necessary, but it simpli�es the asymptotic analysis below. Now we de-
compose

ĝ(x)� g(x) = [Eĝ(x)� g(x)] + [ĝ(x)� Eĝ(x)]

= bias + sampling error.

The �rst term is the bias, which is nonstochastic.

For any x in the interior region [a+ h; b� h] of the support [a; b] of Xt; we have

Eĝ(x)� g(x)

=
1

T

TX
t=1

EKh(x�Xt)� g(x)

= EKh (x�Xt)� g(x) (by identical distribution)

=

Z b

a

1

h
K

�
x� y

h

�
g(y)dy � g(x)

=

Z (b�x)=h

(a�x)=h
K(u)g(x+ hu)du� g(x) (by change of variable

y � x

h
= u)

=

Z 1

�1
K(u)g(x+ hu)du� g(x)

= g(x)

Z 1

�1
K(u)du� g(x)

+hg0(x)

Z 1

�1
uK(u)du

+
1

2
h2
Z 1

�1
u2K(u)g00(x+ �hu)du

(by a 2nd order Taylor expansion, where � 2 (0; 1))

=
1

2
h2CKg

00(x) +
1

2
h2
Z 1

�1
[g00(x+ �hu)� g00(x)]u2K(u)du

=
1

2
h2CKg

00(x) + o(h2)

where the second term Z 1

�1
[g00(x+ �hu)� g00(x)]u2K(u)du! 0

as h ! 0 by Lebesgue�s dominated convergence theorem, and the boundedness of g00(�)
and

R
u2K(u)du <1:

Remarks:
(i) For x in the interior region [a + h; b � h]; the bias of ĝ(x) is proportional to h2:

Thus, we must let h! 0 as T !1 in order to have the bias vanish to zero as T !1.
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(ii) The above result for the bias is obtained under the identical distribution assump-
tion. It is irrelevant to whether fXtg is i.i.d. or serially dependent. In other words, it is
robust to serial dependence in fXtg:
(iii) Question: What happens if x is outside the interior region [a+ h; b� h]?

Suppose x = a+ �h 2 [a; a+ h); where � 2 [0; 1): Then

Eĝ(x)� g(x) = EKh (x�Xt)� g(x)

(by identical distribution)

=
1

h

Z b

a

K

�
x� y

h

�
g(y)dy � g(x)

=

Z (b�x)=h

(a�x)=h
K(u)g(x+ hu)du� g(x)

(by change of variable
y � x

h
= u)

=

Z 1

��
K(u)g(x+ hu)du� g(x)

= g(x)

Z 1

��
K(u)du� g(x)

+h

Z 1

��
uK(u)g0(x+ �hu)du

(by the mean-value theorem, where � lies in (0; 1))

= g(x)

�Z 1

��
K(u)dx� 1

�
+O(h):

= O(1)

if g(x) � � > 0 for all x 2 [a; b] for any small but �xed constant �:

Boundary problem of kernel estimators: If x 2 [a; a + h) or (b � h; b]; Eĝ(x) � g(x)
never vanishes to zero even if h!1. This is due to the fact that there is no symmetric
coverage of data in the boundary region [a; a+ h):

Question: What is the solution?

� Trimming:
Do not use estimates ĝ(x) when x is in the boundary regions. That is, only estimate
the density for points in the interior region [a+ h; b� h]:

Remark: Valuable information may be lost because ĝ(x) in the boundary regions
contain the information on the tail distribution of fXtg; which is particularly
important to �nancial economists and welfare economics (e.g., the low income
population).
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� Using a boundary kernel:
To modify the kernel K[(x�Xt)=h] such that it becomes location-dependent.

A simple method (Hong and Li 2005):

ĝ(x) =
1

T

TX
t=1

Kh(x;Xt);

where

Kh(x; y) �

8><>:
h�1K

�
x�y
h

�
=
R 1
�(x=h)K(u)du; if x 2 [0; h);

h�1K
�
x�y
h

�
; if x 2 [h; 1� h];

h�1K
�
x�y
h

�
=
R (1�x)=h
�1 K(u)du; if x 2 (1� h; 1]

and K(�) is a standard kernel. The idea is to modify the kernel function in the
boundary region so that the integral of the kernel function is unity. Then the bias
is O(h2) for all x 2 [a+ h; b� h] and is O(h) for x 2 [a; a+ h) and (b� h; b]: The
advantage of this method is that it is very simple and always gives positive density
estimates. The drawback is that the bias at the boundary region can be as slow
as O(h); which is slower than O(h2) in the interior region.

Another method: The Jackknife kernel: For x in the interior region [a+h; b�h];
use the standard kernel K(�): For x in the boundary regions [a; a+h) and (b�h; b];
use the following jackknife kernel

K�(u) � (1 + r)
K(u)

!K(0; �)
� (r=�) K(u=�)

!K(0; �=�)
;

where !K(l; �) �
R 1
�� u

lK(u)du for l = 0; 1; r � r(�) and � � �(�) depend on
� 2 [0; 1]. When x 2 [a; a + h); we have � = (x � a)=h; when x 2 (b � h; b]; we
have � = (b� x)=h: In both cases, we set

r � !K(1; �)=!K(0; �)

�!K(1; �=�)=!K(0; �=�)� !K(1; b)=!K(0; �)
:

As suggested in Rice (1986), we set � = 2 � �. Given � 2 [0; 1], the support of
K�(�) is [��; �]: Consequently, for any � 2 [0; 1];Z ��

��
K�(u)du =

Z �

���
K�(u)du = 1;Z ��

��
uK�(u)du = �

Z �

���
K�(u)du = 0;Z �b

��
u2K�(u)du =

Z �

��b
u2K�(u)du > 0;Z �b

��
K2
� (u)du =

Z �

��b
K2
� (u)du > 0:

The bias is O(h2) for all x 2 [a; b]:
Remark: The jackknife kernel formula in Härdle (1990, Section 4.4) is incorrect.
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� The Re�ection method:
The re�ection method is to construct the kernel density estimate based on the
�re�ected� data f�XtgTt=1 and the original data fXtgTt=1 with support on [0; 1]:
Suppose x is a boundary point in [0; h) and x � 0: Then the re�ection method
gives an estimator

ĝ(x) =
1

T

TX
t=1

Kh(x�Xt) +
1

T

TX
t=1

Kh[x� (�Xt)]:

Note that with K(�) having support on [�1; 1]; when x is away from the boundary,
the second term will be zero. Hence, it only corrects the estimate in the boundary
region. See Schuster (1985, Communications in Statistics: Theory and Methods)
and Hall and Wehrly (1991, Journal of American Statistical Association).

Question: What is the correct formula for the kernel density estimator when the
support of Xt is [a; b]?

Answer:

ĝ(x) =
1

T

TX
t=1

Kh(x�Xt) +
1

T

TX
t=1

Kh[x� (�(Xt � a))]:

� Transformation: Yt = q(Xt); where q(�) is a given monotonic increasing function
ranging from �1 to 1: Then

ĝX(x) = q0(x)ĝY [q(x)];

where ĝY (�) is the kernel density estimator for Yt based on fYtgTt=1 which has in�nite
support.

Question: Is there any free lunch?

� Local polynomial �tting
This will be described later.

Question: We have deal with the bias of ĝ(x): What is the variance of ĝ(x)?

For the time being, in order to simplify the analysis, we assume:

Assumption: fXtg is i.i.d.

Remark: This assumption simplies our analysis of computing the asymptotic variance
of ĝ(x): Later, we can relax the independence assumption for fXtg such that fXtg is a
so-called �-mixing process. This will not change the asymptotic results for ĝ(x):

Question: What is the �-mixing condition?
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Put Zt = Kh(x�Xt)� EKh(x�Xt): Then the variance

E [ĝ(x)� Eĝ(x)]2 = E

 
T�1

TX
t=1

Zt

!2

= T�2
TX
t=1

var(Zt)

= T�1var(Zt)

= T�1
�
E[K2

h(x�Xt)]� [EKh(x�Xt)]
2
�

= T�1h�2
Z b

a

K2

�
x� y

h

�
g(y)dy

�T�1
�
1

h

Z b

a

K

�
x� y

h

�
g(y)dy

�2
= T�1h�1g(x)

Z 1

�1
K2(u)du[1 + o(1)] +O(T�1)

= T�1h�1g(x)Dk + o(T�1h�1);

where the last second equality follows by change of variable x�y
h
= u:

Remark: The variance of ĝ(x) is proportional to T�1h�1; which is the approximate
sample size for the observations in the interval [x � h; x + h]: It follows that the mean
squared error (MSE) of ĝ(x) is given by:

MSE[ĝ(x); g(x)] = E [ĝ(x)� g(x)]2

= var[ĝ(x)] + Bias2[ĝ(x); g(x)]

= (Th)�1g(x)DK

+
1

4
h4 [g00(x)]

2
C2K + o(T�1h�1 + h4)

= O(T�1h�1 + h4):

By Chebyshev�s inequality, for any x in the interior region [a+ h; b� h], we have

ĝ(x)� g(x) = OP (T
�1=2h�1=2 + h2):

Remarks:
(i) For ĝ(x)!p g(x), we need Th!1; h! 0; as T !1:
(ii) It is always consistent for g(x) but at a slower rate than T�1=2: This means that

a large sample is needed to obtain a reasonable estimate for g(x):
(iii) Moreover, the bias depends on the smoothness of the unknown function g(�): If

the second derivative has a sharp spike at the point x, then it is very di¢ cult to obtain
a good estimate g(�) at the point x:
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Remark: Relative MSE:

MSE[ĝ(x)=g(x); g(x)] = E

�
ĝ(x)� g(x)

g(x)

�2
= T�1h�1g�1(x)DK +

1

4
h4
�
g00(x)

g(x)

�2
C2K

+o(T�1h�1 + h4)

= O(T�1h�1 + h4)

if g(x) > 0:

Remark: It is very di¢ cult to obtain a reasonable estimate of g(x) in the sparse area
where relatively few observations are available, or in the area where g(�) changes dra-
matically.

2.1.3 Optimal Choice of the Bandwidth

Remark: The choice of the optimal bandwidth can be obtained by minimizingMSE[ĝ(x); g(x)] :

h0 =

�
DK

C2K

1=g(x)

[g00(x)=g(x)]2

� 1
5

T�1=5:

The less smooth g(x) is or the more sparse the observations are, the smaller the band-
width h0: This gives the optimal convergence rate for ĝ(x) :

ĝ(x)� g(x) = Op(T
�2=5):

Remark: The optimal bandwidth is unknown, because it depends on the unknown g(x)
and its second order derivative that we are interested in!

Question: How to obtain this optimal rate in practice?

Plug-in method: Obtain some initial preliminary estimators, say ~g(x) and ~g00(x) for
g(x) and g00(x) and then plug them into the above formula. With such a data-dependent
bandwidth, we obtain a new kernel estimator which has better statistical properties than
an arbitrary choice of h.

Remark: Even if ~g(x) and ~g00(x) are not consistent for g(x) and g00(x), then ĝ(x) is still
consistent for g(x) but not optimal.
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2.1.4 Optimal Choice of the Kernel Function

Using the calculus of variation, it can be shown, as does in Epanechnikov (1969, Theory
of Probability and Its Applications) that the optimal kernel that minimizes the MSE
over a class of kernel functions is the so-called Epanechnikov kernel:

K(u) =
3

4
(1� u2)1(juj < 1):

Remark: The choice of h is more important than the choice of K(u): See also Priestley
(1962).

Question: What happens if fXtg is serially dependent. Suppose fXtg is an �-mixing
process.
Answer: Under suitable conditions on �(j); for exampple, �(j) � Cj�� for � > 5

2
;

we have the same MSE for ĝ(x) as we have when fXtg is i.i.d.

2.2 Kernel Estimation of a Multivariate Density Function

Question: How to estimate a joint pdf f(x) of Xt = (X1t; X2t; :::; Xdt)
0; where x =

(x1; x2; :::; xd)
0 is a d� 1 vector?

Example 1: How to estimate the joint pdf fj(x; y) of (Xt; Xt�j)?

Consider the kernel estimator

f̂(x) =
1

T

TX
t=1

dY
i=1

Kh(xi �Xit)

= T�1
TX
t=1

Kh(x�Xt);

where

Kh(x�Xt) =

dY
i=1

Kh(xi �Xit):

We �rst consider the bias. For an interior point x such that xi 2 [ai + h; bi � h] for all

17



i = 1; :::; d;

Ef̂(x)� f(x)

= EKh(x�Xt)� f(x)

= E
dY
i=1

Kh (xi �Xit)� f(x)

=

Z
� � �
Z
1

h

dY
i=1

K

�
xi � yi
h

�
f(y)dy � f(x)

=

dY
i=1

Z (bi�xi)=h

(ai�xi)=h
K(ui)f(x+ hu)du� f(x)

(by change of variable)

=

Z 1

�1
� � �
Z 1

�1

dY
i=1

K(ui)f(x+ hu)du� f(x)

= f(x)
dY
i=1

Z 1

�1
K(ui)dui � f(x)

+h
dX
i=1

fi(x)

Z 1

�1
uiK(ui)dui�

where fi(x) =
@

@xi
f(x)

�
+
1

2
h2

dX
i=1

dX
j=1

Z 1

�1

Z 1

�1
uiujK(ui)K(uj)fij(x+ �uh))duiduj

=
1

2
h2CK

dX
i=1

fii(x) + o(h2)�
where fii(x) =

@2

@x2i
f(x)

�
= O(h2):

Remark:
Pd

i=1 fii(x) is called the Laplace of the function f(x).

The variance of f̂(x)
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E
h
f̂(x)� Ef̂(x)

i2
= E

"
T�1

TX
t=1

[Kh(x�Xt)� EKh(x�Xt)]

#2

= T�2
TX
t=1

E(Z2t ) by independence

= T�1E

"
dY
i=1

Kh(xi �Xit)� E

dY
i=1

Kh(xi �Xit)

#2
var(Y ) = E(Y 2)� [E(Y )]2

(by independence between Xt and Xs)

= T�1

24E dY
i=1

K2
h(xi �Xit)�

"
E

dY
i=1

Kh(xi �Xit)

#235
= (Thd)�1f(x)Dd

K + o(T�1h�d):

The MSE of f̂(x):

MSE[f̂(x); f(x)]

= (Thd)�1f(x)Dd
K +

1

4
C2Kh

4

"
dX
i=1

fii(x)

#2
+o(T�1h�d + h4)

= O(T�1h�d + h4):

Remarks:
(i) Thd is approximately the sample size for a d-dimensional subspace with each size

equal to h.
(ii) The optimal MSE convergence rate of f̂(x) to f(x) is Op(T

� 4
4+d ) which can be

obtained by setting

h0 =

"
dD2

K

C2K

f(x)

[
Pd

i=1 fii(x)]
2

# 1
d+4

T�
1

d+4 :

Thus, the MSE convergence rate is

� MSE(f̂(x); f(x)) = T�
4
5 if d = 1;

� MSE(f̂(x); f(x)) = T�
2
3 if d = 2;

� MSE(f̂(x); f(x)) = T�
4
7 if d = 3:

19



The larger dimension d, the slower convergence of f̂(x): This is the so-called �curse of
dimensionality�.

Question: How to deal with the curse of dimensionality?

Reduction of dimensionality

� Assumption: Multiplicability conditions such as

f(x) =
dY
i=1

gi(xi):

� Assumption: Suppose fXtg is a Markov process:

f(XtjIt�1) = f(XtjXt�1)

=
f(Xt; Xt�1)

g(Xt�1)
:

Question: What happens if fXtg is serially dependent?

Answer: As long as the serial dependence of Xt on its past history is not too strong (for
example, it satis�es a so-called strong mixing condition; see White (1999, Asymptotic
Theory for Econometricians, 2nd Edition)), then the results established above continue
to hold. This follows because the covariance terms cov[Kh(x;Xt); Kh(x;Xs)] together
are of smaller order in magnitude than var[Kh(x;Xt)]; due to the smoothing parameter.

Question: What is the �-mixing condition?

De�nition [�-mixing] Let fXtg be a strictly stationary time series process. For j =
1; 2; :::; de�ne

�(j) = sup
A2F0�1;B2F1j

jP (A \B)� P (A)P (B)j ;

where F j
i denotes the �-algebra generated by fXt; i � t � jg: Then the process fXtg is

said to be �-mixing if �(j)! 0 as j !1:

Remarks:
(i) Similar to ergodicity, the �-mixing condition is a notion for asymptotic indepen-

dence. A mixing process can be viewed as a sequence of random variables for which the
past and distant future are asymptotically independent.
(ii) �-mixing implies ergodicity. See White (Asymptotic Theory for Econometricians,

1999).
(iii) There are several concepts of mixing, such as �-mixing, �-mixing, and �-mixing.

Among them, �-mixing is the weakest condition on serial dependence; it is also called
strong mixing.
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(iv) If fXtg is a strictly stationary Markov chain, the mixing coe¢ cient �(j) can be
e¤ectively de�ned with (F0

�1;F1
j ) replaced by (�(X0); �(Xn)); and in this case,

�(j) � 1

2

Z Z
jfj(x; y)� g(x)g(y)j dxdy;

where fj(x; y) is the joint pdf of (X0; Xj):

(v) Lemma [Doukhan (1994)]: Let X and Y be two real random variables. De�ne

� = sup
A2�(X);B2�(Y )

jP (A \B)� P (A)P (B)j :

(i) Suppose E[jXjp + jXjq] <1 for some p; q � 1 and 1=p+ 1=q < 1: Then

jcov(X; Y )j � 8�1=r [EjXjp]1=p [EjXjq]1=q ;

where r = (1� 1=p� 1=q)�1:
(ii) If P (jXj � C1) = 1 and P (jY j � C2) = 1 for some constants C1 and C2; then

jcov(X; Y )j � 4�C1C2:

Theorem [Asymptotic variance of ĝ(x) under mixing conditions]: Let fXtg be
a strictly stationary �-mixing process with the mixing coe¢ cient �(j) � Cj�� for some
C > 0 and � > 2: Assume that fj(x; y) is bounded uniformly in (x; y) and in j: Then
for x 2 [a; b];

var [ĝ(x)] = T�1h�1g(x)DK + o(T�1h�1):

Proof: Let Zt = Kh(x;Xt): Then by the stationarity of fXtg; we have

var [ĝ(x)] = var

 
T�1

TX
t=1

Zt

!

= T�1var(Z1) + 2T�1
T�1X
j=1

(1� j=T )cov(Z0; Zj):

Note that E(Z1) = Eĝ(x) = O(1): By change of variable we have

var(Z1) = EK2
h(x;X1)� (EZ1)2

= h�1g(x)DK + o(h�1):

Thus, we only need to show

T�1X
j=1

cov(Z0; Zj) = o(h�1):

Because jZ0j � Ch�1; we have

jcov(Z0; Zj)j � 4(Ch�1)2�(j)
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by Billingsley�s inequality. It follows that

T�1X
j=m(T )+1

jcov(Z0; Zj)j � 4C2h�2
T�1X

j=m(T )+1

j�� � C3m(T )1��h�2

where m(T )!1 as T !1:
On the other hand,

jcov(Z0; Zj)j = jE(Z0Zj)� E(Z0)E(Zj)j

�
Z
Kh(x; x

0)Kh(y; y
0)fj(x

0; y0)dx0dy0 + [E(Z0)]
2

� C

�Z
Kh(x; x

0)dx0
�2
+ [E(Z0)]

2

� C2:

Hence, we have
m(T )X
j=1

jcov(Z0; Zj)j � Cm(T ):

By taking m(T ) = h�2=�; we have

T�1X
j=1

jcov(Z0; Zj)j = O(h�2=�) = o(h�1)

for � > 2: This completes the proof.

Remark: The asymptotic variance of ĝ(x) is the same as that under the i.i.d. assump-
tion on fXtg:

Question: Why?

Intuition [Hart (1996)]. Suppose the kernel K(�) has support on [�1; 1]: Then the
kernel density estimator at the point x uses only the local data points with the local
interval [x � h; x + h]: The observations whose values fall into this local interval are
generally far away from each other in time: Thus, although the data fXtgT=1 in the
original sequence can be highly correlated, the dependence for the new series in the
local interval around x can be much weaker. As a result, the local data look like those
from an independent sample. Hence, one would expect that the asymptotic variance of
the kernel density estimator is the same as that for the independent observations when
certain mixing conditions are imposed.

References : Kernel estimation in time series: Robinson (1983, Journal of Time Series
Analysis), Fan and Yao (2003, Nonlinear Time series)

Question: How to estimate ĝ(x) using real data?

Applications of Density Estimation in Economics and Finance
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� Ait-Sahalia (1996, Review of Financial Studies): Use the kernel-based marginal
density estimator ĝ(x) to test the adequacy of a di¤usion model.

� Gallant and Tauchen (1996, Econometric Theory): Use the Hermite polynomial-
based estimator for the conditional pdf ofXt given It�1 to estimate continuous-time
models e¢ ciently.

� Hong and Li (2005, Review of Financial Studies): Use the kernel-based joint den-
sity estimator f̂j(x; y) to test the adequacy of continuous-time models.

� Hong and White (2005, Econometrica): use the kernel-based joint density esti-
mator f̂j(x; y) to construct a nonparametric entropy-density measure for serial
dependence with a well-de�ned asymptotic distribution.

� Su and White (2003,Working paper): Test for general Granger causality by check-
ing whether

f(XtjXt�1; :::; Xt�p) = f(XtjXt�1; :::; Xt�p; Yt�1; :::; Yt�q);

where the conditional pdfs are estimated using the kernel method.

� de Matos, J.A. and M. Fernandes (2001,Working paper): How to test the Markov
property for a time series process?

f(XtjIt�1) = f(XtjXt�1)

Compare two kernel estimators for the conditional pdfs

f(XtjXt�1; Xt�j) =
f(Xt; Xt�1; Xt�j)

f(Xt�1; Xt�j)

and

f(XtjXt�1) =
f(Xt; Xt�1)

f(Xt�1)
:

How to check whether a stationary time series fXtg is a Markovian process? This
requires to check whether

f(Xt = xjIt�1) = f(Xt = xjXt�1);

where It�1 = fXt; Xt�1; :::; g: Question: Why is this important?

Remark: Most continuous-time di¤usion models are Markovian processes.

Lemma: Put f(xjy) = f(Xt = xjXt�1 = y): De�ne

Zt =

Z Xt

�1
f(xjXt�1)dx = Ft(Xt);
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where Ft(x) = P (Xt � xjXt�1): If fXtg is Markovian, then

fZtg � i:i:d:U [0; 1]:

A potential Nonparametric Test:

Construct a nonparametric density estimator

f̂(xjy) = f̂(x; y)

ĝ(y)
;

where

f̂(x; y) =
1

(T � 1)h2
TX
t=1

Kh(x;Xt)Kh(y;Xt�1);

ĝ(y) =
1

Th

TX
t=1

Kh(y;Xt):

De�ne

Ẑt =

Z Xt

�1
f̂(xjXt�1)dx:

Then one can check if fẐtg is approximately i.i.d.

We need to construct a test statistic and derive its asymptotic distribution. A related
work is Hong and Li (2005). Note that it is important to deal with the possible impact
of the sampling variation in f̂(�):

3 Nonparametric Regression Estimation
Question: How to estimate a regression function E(YtjXt) using the sample fYt; XtgTt=1?

Examples of Regression Functions

Example 1: The autoregression function

rj(Xt�j) = E(XtjXt�j):

We can write
Xt = rj(Xt�j) + "t;

where E("tjXt�j) = 0 a.s:

Example 2: The conditional variance

�2j(x) = var(XtjXt�j) = E(X2
t jXt�j)� [E(XtjXt�j)]

2 :

24



Example 3: The conditional distribution function

Ft(x) = P (Xt � xjIt�1)
= E [1(Xt � x)jIt�1] ;

where It�1 is an information set available at time t � 1: If we assume that fXtg is a
Markovian process. Then

Ft(x) = E [1(Xt � x)jXt�1] :

This is the regression function of 1(Xt � x) on Xt�1:

Example 4: The conditional characteristic function

't(u) = E [exp(iuXt)jIt�1] :

If we assume that fXtg is a Markovian process. Then

't(u) = E [exp(iuXt)jXt�1] :

This is the regression function of exp(iuXt) on Xt�1:

3.1 Kernel Regression Estimation

Assumption: Suppose fYt; X 0
tg0 is an i.i.d. sequence such that r(x) � E(YtjXt = x)

exists and r(x) is twice continuously di¤erentiable.

Remark: We will relax the i.i.d. assumption to a dependent time series process at a
later stage. In fact, to allow some mild serial dependence (e.g.., �-mixing) in fYt; X 0

tg0
will not a¤ect the asymptotic results derived under the i.i.d. assumption.

Question: How to estimate r(x)?

We can always write
Yt = r(Xt) + "t;

where E("tjXt) = 0 a.s. and var("tjXt) = �2(Xt) a.s. Note that we allow for conditional
heteroskedasticity.

De�ne the so-called Nadaraya-Watson estimator

r̂(x) =
m̂(x)

ĝ(x)
;

where

m̂(x) =
1

T

TX
t=1

YtKh(x�Xt):
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and, as before,

ĝ(x) = T�1
TX
t=1

Kh(x�Xt)

is the kernel estimator for density g(x):

Alternatively, we can write

r̂(x) =

TX
t=1

ŴtYt;

where the weighting function

Ŵt =
Kh(x�Xt)PT
t=1Kh(x�Xt)

satis�es
TX
t=1

Ŵt = 1:

Geometric Interpretation:

Suppose the uniform kernel K(u) = 1
2
1(juj � 1) is used. Then

r̂(x) =

PT
t=1 Yt1(jXt � xj � h)PT
t=1 1(jXt � xj � h)

= the average of the Yt whose corresponding Xt�s fall into the interval [x� h; x+ h]

= the local sample mean.

Remark: More generally, we can assign di¤erent weights to di¤erent observations ac-

cording to their distances to the location x: This will make sense because the observations
closer to x will contain more information about r(x): The use ofK(�) is to assign di¤erent
weights for observations.

Remark: Kernel regression is a special convolution �lter used in engineering.

Question: How to derive the asymptotic MSE of r̂(x)?

Observe

r̂(x)� r(x) =
m̂(x)� r(x)ĝ(x)

ĝ(x)

=
m̂(x)� r(x)ĝ(x)

Eĝ(x)

+
[m̂(x)� r(x)ĝ(x)]

Eĝ(x)
� [Eĝ(x)� ĝ(x)]

ĝ(x)

=
m̂(x)� r(x)ĝ(x)

Eĝ(x)

+ higher order term.
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Here the second term is of a higher order term because ĝ(x)�Eĝ(x)!p 0 and Eĝ(x)!
g(x)

R 1
�1K(u)du > 0:

Remark: It can be shown that the second term is of a higher order term that vanishes
faster than the �rst term (question: how?). As a consequence, the convergence rate of
r̂(x) to r(x) is determined by the �rst term, which is the dominant term.

We �rst consider the numerator

m̂(x)� r(x)ĝ(x) =
1

T

TX
t=1

[Yt � r(x)]Kh(x�Xt)

(using Yt = r(Xt) + "t)

=
1

T

TX
t=1

"tKh(x�Xt)

+
1

T

TX
t=1

[r(Xt)� r(x)]Kh(x�Xt)

= V̂ (x) + B̂(x); say;

= variance component + bias component.

For the variance component, we have

EV̂ (x)2 = E

"
T�1

TX
t=1

"tKh(x�Xt)

#2

= T�2E

"
TX
t=1

"tKh(x�Xt)

#2

= T�2
TX
t=1

E["2tK
2
h(x�Xt)] (by independence, and E("tjXt) = 0)

= T�1E
�
"2tK

2
h(x�Xt)

�
= T�1E

�
�2(Xt)K

2
h(x�Xt)

�
(by E("2t jXt) = �2(Xt))

= T�1
Z b

a

�
1

h
K

�
x� y

h

��2
�2(x+ hu)g(x+ hu)dy

=
1

Th
�2(x)g(x)

Z 1

�1
K2(u)du[1 + o(1)];

by change of variable, and the continuity of �2(�)g(�); where �2(x) = E("2t jXt = x) is
the conditional variance of "t or Yt given Xt = x:
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On the other hand, for the denominator, we have

Eĝ(x) = E [Kh(x�Xt)]

=

Z b

a

1

h
K

�
x� y

h

�
g(y)dy

! g(x)

Z 1

�1
K(u)du = g(x)

if
R
K(u)du = 1: It follows that

E

"
V̂ (x)

Eĝ(x)

#2
=

1

Th

�2(x)

g(x)

Z 1

�1
K2(u)du [1 + o(1)] :

Remark: The variance of r̂(x) is proportional to (Th)�1; where Th is the approximate
(e¤ective) sample size of the observations in the interval [x � h; x + h]: The variance
of r̂(x) is also proportional to �2(x) and to

R 1
�1K

2(u)du: Thus, the use of a downward
weighting kernel K(�) will reduce the variance of r̂(x) as opposed to the use of the
uniform kernel. In other words, it improves the e¢ ciency of the estimator when one
discounts observations away from the point x:

For the bias, we �rst write

B̂(x) = EB̂(x) +
h
B̂(x)� EB̂(x)

i
:
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For all interior points x 2 [a+ h; b� h]; we have

EB̂(x) = E[r(Xt)Kh(x�Xt)]� r(x)E[Kh(x�Xt)]

=

Z
r(z)Kh(x� z)g(z)dz � r(x)

Z
Kh(x� z)g(z)dz

(de�ne m(z) = r(z)g(z))

=

Z b

a

m(z)Kh(x� z)dz � r(x)

Z
g(z)Kh(x� z)dz

=

Z (b�x)=h

(a�x)=h
m(x+ hu)K(u)du

�r(x)
Z (b�x)=h

(a�x)=h
g(x+ hu)K(u)du

= m(x)

Z 1

�1
K(u)du

+hm0(x)

Z 1

�1
uK(u)du

+
1

2
h2m00(x)

Z 1

�1
u2K(u)du[1 + o(1)]

�r(x)g(x)
Z 1

�1
K(u)du

�hr(x)g0(x)
Z 1

�1
uK(u)udu

�1
2
h2r(x)g00(x)

Z 1

�1
u2K(u)du][1 + o(1)]

(given
Z 1

�1
uK(u)du = 0)

=
1

2
h2 [m00(x)� r(x)g00(x)]

Z
u2K(u)du[1 + o(1)]

=
1

2
h2[r00(x)g(x) + 2r0(x)g0(x)]CK + o(h2);

where we have used the fact that

m00(x) = [r(x)g(x)]00

= [r0(x)g(x) + r(x)g0(x)]0

= r00(x)g(x) + 2r0(x)g0(x) + r(x)g00(x)

It follows that

E

"
B̂(x)

Eĝ(x)

#
=
h2

2

�
r00(x) +

2r0(x)g0(x)

g(x)

�
CK + o(h2);

where we have made use of the fact that
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Eĝ(x)! g(x)

Z 1

�1
K(u)du = g(x)

if
R 1
�1K(u)du = 1:

Question: Do we have an asymptotically unbaised estimator if
R 1
�1K(u)du 6= 1 (but

other conditions on K(�) are the same (i.e.,
R 1
�1K(u)udu = 0;

R 1
�1K(u)u

2du = CK)?

Answer: Yes, because we still have

EB̂(x) =
1

2
h2 [m00(x)� r(x)g00(x)]

Z 1

�1
u2K(u)du[1 + o(1)]:

Question: What happens to the bias EB̂(x) if x 2 [a; a+h) [(b�h; b]: Does EB̂(x)! 0
as h! 0?

Answer: Yes, we still have EB̂(x)=Eĝ(x) = O(h) for x in the boundary region (say,
x = �h for � 2 [0; 1]). This is di¤erent from the kernel density estimator ĝ(x): However,
it is slower than O(h2); the rate of the bias at the interior region.

Question: Why? This is because

EB̂(x) = [m(x)� r(x)g(x)]

Z 1

��
K(u)du+O(h)

= O(h):

Remarks: The boundary correction techniques are still useful to reduce the bias
EB̂(x)=Eĝ(x) for x in the boundary regions. They can reduce the bias up to order
O(h2):

We now show B̂(x)� EB̂(x) is a higher order. Put

Zt = [r(Xt)� r(x)]Kh(x�Xt):

Then

E[B̂(x)� EB̂(x)]2 = E

"
T�1

TX
t=1

(Zt � EZt)

#2

= T�2
TX
t=1

E(Zt � EZt)
2 by independence

� T�1E(Z2t )

= T�1E
�
[r(Xt)� r(x)]2K2

h(x�Xt)
	

� CT�1h[1 + o(1)] (why?)

is a higher order term.

30



It follows that

E[m̂(x)� r(x)ĝ(x)]2 = E(V̂ + B̂)]2

= E(V̂ 2) + E(B̂2)

= EV̂ 2 + (EB̂)2 + E(B̂ � EB̂)2

=
1

Th
DK�

2(x)g(x)

+
h4

4
C2K [r

00(x) + 2r0(x)g0(x)]2

+o((Th)�1 + h4):

Therefore, the asymptotic mean square error of r̂(x) is

E [r̂(x)� r(x)]2 =
1

Th

�2(x)

g(x)
DK +

h4

4

�
r00(x) + 2r0(x)g0(x)

g(x)

�2
CK

+o((Th)�1 + h4)

= O(T�1h�1 + h4):

Remarks:
(i) The optimal choice of h is obtained by minimizing the MSE of r̂(x) :

h� = c�T�1=5;

where

c� =

�
DK

CK

�2(x)g(x)

[r00(x) + 2r0(x)g0(x)]2

� 1
5

T�
1
5 :

Thus, the bandwidth h should be larger when the data is noisy (large �2(x)) and should
be small when the regression function r(x) is not smooth (large derivatives).
(ii) The optimal choice of the kernel function: Like in the estimation of the probability

density function, it is still the Epanechnikov kernel

K(u) =
3

4
(1� u2)1(juj < 1):

(iii) The choice of h is more important than the choice of K(�):

Question: How to estimate the derivatives of r(x); such as r0(x) and r00(x) by the kernel
method?

Answer: Use r̂0(x) and r̂00(x); assuming that K(�) is twice continuously di¤erentiable.
However, it may be noted that the optimal h that minimizes the MSE of r̂(�) is not the
same as the optimal bandwidth h that minimizes the MSE of r̂(d)(�); where d = 1; 2: A
larger bandwidth is needed to estimate the derivatives of r(x):
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3.2 Local Polynomial Estimator/Local Weighted Least Square
Estimator

Interpretation for the Nadaraya-Watson Estimator

Consider the problem

min
r

TX
t=1

(Yt � r)2;

where r is a constant. The solution is the sample mean

r̂ = �Y � 1

T

TX
t=1

Yt:

We now consider the minimization problem

min
r

TX
t=1

(Yt � r)2Kh(x�Xt);

where r is, again, a real-valued constant. The FOC is given by

TX
t=1

(Yt � r̂)Kh(x�Xt) = 0:

TX
t=1

YtKh(x�Xt) = r̂
TX
t=1

Kh(x�Xt)

It follows that

r̂ � r̂(x)

=

PT
t=1 YtKh(x�Xt)PT
t=1Kh(x�Xt)

=
m̂(x)

ĝ(x)
:

This is the so-called local constant estimator. Therefore, the kernel regression estimator
can be viewed as a locally weighted sample mean.

Question: Why only use a local constant? Why not use a local linear function? Or
more generally, why not use a local polynomial?

Question: Is there any gain by using a local polynomial estimator?

Local Polynomial Regression Estimator

References:
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Suppose z is a point in a small neighborhood of x; and r(z) is di¤erentiable with
respect to z up to order p + 1 in this neighborhood. Then by a (p + 1)-order Taylor
series expansion, we have for all z in a neighborhood of x;

r(z) =

pX
j=0

1

j!
r(j)(x)(z � x)j

+
1

(p+ 1)!
r(p+1)(�x)(z � x)p+1

=

pX
j=0

�j(z � x)j

+
1

(p+ 1)!
r(p+1)(�x)(z � x)p+1,

where �x lies in the segment between x and z; and the coe¢ cient

�j � �j(x) =
1

j!
r(j)(x); j = 0; 1; :::; p;

depends on x: This relationship suggests that one can use a local polynomial approxima-
tion model to �t the function r(z) in the neighborhood of x as long as the observations
in this neighborhood is �su¢ ciently rich�.
We thus consider the local minimization problem

min
�

TX
t=1

"
Yt �

pX
j=0

�j(Xt � x)j

#2
Kh(x�Xt)

=
TX
t=1

(Yt � �0Zt)
2Kh(x�Xt);

where � = (�0; �1; :::; �p)
0 and Zt = [1; (Xt � x); :::; (Xt � x)p]0: The resulting local

weighted least squares estimator

r̂(z) =

pX
j=0

�̂j(z � x)j for z near x;

is the so-called local polynomial estimator of r(z) for z near x: In particular, �̂0 is an
estimator for r(x); and �!�̂� is an estimator for r(�)(x) where 0 < � � p:

Question: Why?

The regression estimator at point x is then given by

r̂(x) =

pX
j=0

�̂j(x� x)j = �̂0:
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The derivative estimator of r(�)(z) for z near the point x is given by

r̂(�)(z) =

pX
j=�

j(j � 1) � � � (j � � + 1)!�̂j(z � x)j�� for � � p:

Thus, we have the derivative estimator at point x

r̂(�)(x) = �!�̂� :

We can obtain r̂(x) and r̂(�)(x) for 1 � � � p simultaneously.

Remarks:
(i) Local polynomial smoothing is very convenient for estimating the r(j)(x) simul-

taneously.
(ii) When p = 0; we have a local constant estimator, i.e., the Nadaraya-Watson

estimator.
(iii) To compute the local polynomial estimator, one has to choose p; h and K(�):

Often, a nonnegative kernel function K(�) is used, which corresponds to a second order
kernel function. The choices of (p; h) jointly determine the complexity of the local
polynomial model. The choice of h is more important than the choice of p: It has been
recommended that p = � +1 if the interest is in estimating r(�)(x) for 0 � � � p: When
p = 1; it is a local linear smoother. The choice of h can be based on data-driven methods
such as the cross-validation and the plug-in methods.

Matrix Expression

Put

Zt = [1; (Xt � x); (Xt � x)2; :::; (Xt � x)p]0; a (p+ 1)� 1 regressor vector,

Wt = Kh(x�Xt) = h�1K

�
x�Xt

h

�
:

Then

TX
t=1

"
Yt �

pX
j=0

�j(Xt � x)j

#2
Kh(x�Xt)

=
TX
t=1

(Yt � �0Zt)
2Wt

= (Y � Z�)0W (Y � Z�):

FOC:
TX
t=1

ZtWt(Yt � Z 0t�̂) = 0:

TX
t=1

ZtWtYt =

 
TX
t=1

ZtWtZ
0
t

!
�̂
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It follows that

�̂ � �̂(x)

=

 
TX
t=1

ZtWtZ
0
t

!�1 TX
t=1

ZtWtYt

= (Z 0WZ)�1Z 0WY;

where W = diag(W1; � � �;WT ) is a T � T diagonal matrix, Z is a T � (p + 1) matrix,
and Y is a T � 1 vector.

Remark: This is a local WLS (when K(�) has a bounded support on [�1; 1])!

Question: What is the advantage of using the local polynomial approximation?

Asymptotic Properties of Local Polynomial Smoothing

Suppose our interest is in estimating r(�)(x); where 0 � v � p: Denote e�+1 for the
(p + 1) � 1 unit vector with 1 at the (� + 1) position and zero elsewhere. Recalling
Wt = Kh(x�Xt) = h�1K[(x�Xt)=h]; we de�ne

Ŝj =
TX
t=1

(Xt � x)jKh(Xt � x) =
TX
t=1

(Xt � x)jWt;

and let

Ŝ = Z 0WZ

=
TX
t=1

ZtWtZ
0
t

=
h
Ŝ(i�1)+(j�1)

i
(i;j)

be the (p+ 1)� (p+ 1) symmetric matrix, whose (i; j)th element is Ŝi+j�2:
Then we have �̂ = Ŝ�1Z 0WY; and so

�̂� = e0�+1�̂

= e0�+1Ŝ
�1Z 0WY

= e0�+1Ŝ
�1

TX
t=1

ZtWtYt

=

TX
t=1

e0�+1Ŝ
�1

0BB@
1
(Xt � x)
� � �
(Xt � x)p

1CCA 1

h
K

�
Xt � x

h

�
Yt

=
TX
t=1

Ŵ�

�
Xt � x

h

�
Yt; say,
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where the e¤ective kernel Ŵ�(�) is the multiplication of the kernelK(�) with a polynomial
function

Ŵ�(u) = e0�+1Ŝ
�1[1; hu; :::; (hu)p]0

1

h
K(u)

= e0�+1Ŝ
�1HP (u)h�1K(u);

where H = diag(1; h; :::; hp) and P (u) = (1; u; :::; up)0 is a (p + 1) � 1 vector of a p-th
order polynomial. Recall we will make change of variable u = (Xt � x)=h:

Question: What properties does the e¤ective kernel Ŵ�(u) have?

Lemma [Orthogonality]:

TX
t=1

Ŵ�

�
Xt � x

h

�
(Xt � x)q = ��;q for 0 � �; q � p;

where ��;q = 1 if � = q and ��;q = 0 otherwise.

Question: What is the intuition behind this orthonormality result?

Proof: Observing that (Xt � x)q = Z 0teq+1; we have

TX
t=1

Ŵ�

�
Xt � x

h

�
Z 0teq+1 = e0�+1Ŝ

�1

 
TX
t=1

ZtWtZ
0
t

!
eq+1

= e0�+1Ip+1eq+1

= ��q:

Now, let S be the (p + 1) � (p + 1) matrix whose (i; j)th element is �i+j�2; where
�j =

R1
�1 u

jK(u)du: Then

S =

Z
P (u)K(u)P (u)0du:

De�ne the equivalent kernel by

K�
� (u) = e0�+1S

�1P (u)K(u):

Lemma [Equivalent Kernel]: Suppose fYt; Xtg is a stationary �-mixing process with
�(j) � Cj�� for � > 5

2
: Suppose that the marginal density g(x) of Xt is bounded on an

interval [a; b]; and has a continuous derivative at point x 2 [a; b]; and that K(�) satis�es
a Lipschitz condition. Then

Ŵ�(u) =
1

Th�+1g(x)
K�
� (u) [1 +OP (aT )] ;
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where aT = [ln(T )=Th]1=2+h: Moreover, the equivalent kernel K�
� (�) satis�es the follow-

ing moment condition Z 1

�1
uqK�

� (u)du = ��;q; for 0 � �; q � p:

Remark: The lemma implies that

�̂� =
TX
t=1

Ŵ�

�
x�Xt

h

�
Yt

=
1

Th�+1g(x)

TX
t=1

K�
�

�
Xt � x

h

�
Yt[1 +OP (aT )]:

Thus, the local polynomial estimator works like a kernel regression estimator with a
known design density g(x): This explains why the local polynomial estimator adapts
to various design densities. In particular, it �ts well even where g0(x) is large. In the
regions where g0(x) is large, the standard Nadaraya-Watson kernel estimator cannot �t
well, due to large biases.

Proof: We �rst consider the denominator Ŝ = [Ŝi+j�2](i;j). Observe that

(Thj)�1Ŝj = T�1
TX
t=1

�
x�Xt

h

�j
Kh(x�Xt)

is like a kernel density estimator with the kernel function K�
j (u) = ujK(u): Therefore,

we have
(Thj)�1Ŝj = g(x)�j +OP (aT );

where O(h) in aT = [(h=T )1=2 lnT + h] is contributed by the bias term in a �rst order
Taylor series expansion. Recall H = diag(1; h; :::; hp): It follows that

T�1H�1ŜH�1 = g(x)S [1 +OP (aT )]

or equivalently
Ŝ = Tg(x)HSH [1 +OP (aT )] :

Substituting this expression into the de�nition of Ŵ�(u); we obtain

Ŵ�(u) = e0�+1Ŝ
�1HP (u)

1

h
K(u)

= e0�+1 fTg(x)HSHg
�1HP (u)

1

h
K(u) [1 +OP (aT )]

(using e0�+1H
�1 = h��e0�+1)

=
1

Th�+1g(x)

�
e0�+1S

�1P (u)K(u)
�
[1 +OP (aT )]

=
1

Th�+1g(x)
K�
� (u) [1 +OP (aT )] ;
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where we have used the fact that e0�+1H = h�e0�+1:
The properties for the equivalent kernel K�

� (u) can be shown in the same way as the
proof of the �rst Lemma. Observing uq = P (u)0eq+1; we haveZ

uqK�
� (u)du =

Z
K�
� (u)u

qdu

= e0�+1

�
S�1

Z
P (u)K(u)P (u)0du

�
eq+1

= e0�+1S
�1Seq+1

= e0�+1Ip+1eq+1

= ��;q:

This completes the proof of the second lemma.

Question: What is the MSE of �̂?

We �rst write the v-th component of �̂;

�̂� � �� =
TX
t=1

Ŵ�

�
Xt � x

h

�
Yt � ��

(Yt = r(Xt) + "t)

=
TX
t=1

Ŵ�

�
Xt � x

h

�
"t +

"
TX
t=1

Ŵ�

�
Xt � x

h

�
r(Xt)� ��

#
= V̂ + B̂; say.

For the �rst term, using Ŝ = Tg(x)HSH[1 +O(aT )]; which has been proven earlier, we
can write

V̂ =
TX
t=1

Ŵ�

�
Xt � x

h

�
"t

= e0�+1Ŝ
�1Z 0W"

(using Ŝ = Tg(x)HSH[1 + o(1)] and e0�+1H
�1 = h��)

=
1

Th�g(x)
e0�+1S

�1H�1Z 0W" [1 +OP (aT )] ;
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where we used e0�+1H
�1 = h��e0�+1; and the fact that

E(Z 0W""0WZ)

= E

"
TX
t=1

"tZtKh(Xt � x)

#"
TX
s=1

"sZ
0
sKh(Xs � x)

#

=
TX
t=1

E
�
"2tZtK

2
h(Xt � x)Z 0t

�
(by E("tjIt�1) = 0 or E("tjXt) = 0)

= TE
�
"2tZtK

2
h(Xt � x)Z 0t

�
=

T

h
�2(x)g(x)HS�H;

by the change of variable and the continuity of �2(�); where S� is the (p + 1) � (p + 1)
matrix with (i; j)-th element

R
ui+j�2K2(u)du: Note that S� 6= S: For S; the (i; j)-th

element is
R
ui+j�2K2(u)du:

It follows that the variance

avar
�
V̂
�
=

1

Th�g(x)
e0�+1S

�1H�1E(Z 0W""0WZ)H�1S�1
1

Th�g(x)

=
1

Th2�+1
�2(x)

g(x)
e0�+1S

�1S�S�1e�+1

=
1

Th2�+1
�2(x)

g(x)

Z
K�(u)2du

= O(T�1h�2��1):

Question: How to express e0�+1S
�1S�S�1e�+1 using the equivalent kernel K�

� (�)?
Answer: Recall K�

� (u) = e0�+1P (u)K(u). We haveZ
K�
� (u)

2du =

Z
[e0�+1S

�1P (u)K(u)][K(u)P (u)0S�1e�+1]du

= e0�+1S
�1
�Z

P (u)K2(u)P (u)0du

�
S�1e�+1

= e0�+1S
�1S�S�1e�+1:

Question: How to compute the order of magnitude of the bias B̂?

B̂ =
TX
t=1

Ŵ�

�
Xt � x

h

�
r(Xt)� ��

=

pX
j=1

1

j!
r(j)(x)

TX
t=1

Ŵ�

�
Xt � x

h

�
(Xt � x)j

� 1
�!
r(�)(x)

+

TX
t=1

Ŵ�

�
Xt � x

h

�
R(x;Xt)
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(Recall �� = �!r(�)(x):) Put the reminder

R(x;Xt) = r(Xt)�
pX
j=0

1

j!
r(j)(x)(Xt � x)j

=
1

(p+ 1)!
r(p+1)(�xt)(Xt � x)p+1;

where �xt = �Xt + (1 � �)x for some � in [0; 1]: Then using the expression 
(Xt) =Pp
j=1 �j(Xt � x)j +R(x;Xt) and the orthogonality condition of Ŵ�(�); we have

B̂ =

TX
t=1

Ŵ�

�
Xt � x

h

�
R(x;Xt)

=
1

Th�+1g(x)

TX
t=1

K�
�

�
Xt � x

h

�
R(x;Xt) [1 +OP (aT )]

= ~B [1 +OP (aT )] ; say,

by Chebyshev�s inequality.
We now consider ~B: It can be shown that

~B � E ~B =
1

Th�+1g(x)

TX
t=1

�
K�
�

�
Xt � x

h

�
R(x;Xt)� E

�
K�
�

�
Xt � x

h

�
R(x;Xt)

��
= OP (ln(T )(Th)

�1=2h��hp+1)

which is a higher order term (Question: How to show this under the i.i.d. assumption?).
Thus, the bias is determined by

E ~B =
1

Th�+1g(x)
E

TX
t=1

K�
�

�
Xt � x

h

�
R(x;Xt)

=
1

Th�+1g(x)
E

TX
t=1

K�
�

�
Xt � x

h

�
r(p+1)(x)

(p+ 1)!
(Xt � x)p+1

+
1

Th�+1g(x)
E

TX
t=1

K�
�

�
Xt � x

h

�
[r(p+1)(�xt)� r(p+1)(x)]

(p+ 1)!
(Xt � x)p+1

=
hp+1

h�g(x)

r(p+1)(x)

(p+ 1)!

Z
K�
� (u) g(x+ hu)up+1du+O(hp+2��)

=
hp+1

h�
1

(p+ 1)!
r(p+1)(x)

Z
up+1K�

� (u)du+O(hp+2��)

(using K�
� (u) = e0�+1S

�1P (u)K(u))

=
1

h�
hp+1r(p+1)(x)

(p+ 1)!
e0�+1S

�1C +O(hp+2��);

where C is a (p+ 1)� 1 vector with the i-th element
R
up+2�iK(u)du:
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Question: Why do we have
R 1
�1 u

p+1K�
� (u)du = e0�+1S

�1C?

Answer: Recall K�
� (u) = e0�+1S

�1P (u)K(u); we haveZ 1

�1
up+1K�

� (u)du = e0�+1S
�1
Z 1

�1
up+1P (u)K(u)du = e0�+1S

�1C:

It follows that the asymptotic MSE of �̂�

MSE(�̂� ; ��) =
1

Th2�+1
�2(x)

g(x)
e0�+1S

�1S�S�1e�+1

+

�
hp+1��r(p+1)(x)

(p+ 1)!

�2
e0�+1S

�1CC 0S�1e�+1

=
1

Th2�+1
�2(x)

g(x)

Z
K�
� (u)

2du

+h2(p+1��)
�
r(p+1)(x)

(p+ 1)!

�2
[

Z
up+1K�

� (u)du]
2

= O(T�1h�2��1 + h2(p+1��))

= O(T�1h�1 + h4) if p = 1; � = 0:

Remarks:
(i) The local WLS can consistently estimate the Taylor series expansion coe¢ cients:

�!�̂� !p �!�� = r(�)(x):

(ii) By minimizing the MSE, the optimal convergence rate can be achieved by choos-
ing the bandwidth

h� / T�
1

2p+3 :

The optimal bandwidth h� does not depend on the order of the derivative �. Of course,
the proportionality still depends on �:
(iii) The intuitive idea of local polynomial smoothing in economics can be dated back

to Nerlove (1966), where he use a piecewise linear regression to estimate a nonlinear
cost function for the electricity industry. Also see White (1980, International Economic
Review) for a related discussion.

Theorem [Asymptotic Normality] If h = O(T 1=(2p+3)) and r(p+1)(x) is continuous,
then as T !1;

p
Th

�
H(�̂� �)� hp+1r(p+1)(x)

(p+ 1)!
S�1C

�
!d N

�
0;
�2(x)

g(x)
S�1S�S�1

�
;
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where � = [r(x); :::; r(p)(x)=p!]0: Therefore,

p
Th2�+1

�
r̂(�)(x)� r(�)(x)� hp+1��r(p+1)(x)

(p+ 1)!

Z
up+1K�

� (u)du

�
! dN

�
0;
(�!)2�2(x)

g(x)

Z
K�2
� (u)du

�
:

Boundary Behavior of the Local Polynomial Estimator

Question: The above results hold for x in the interior region, i.e., x 2 [a + h; b � h]:
What happens if x is in the boundary region?

For simplicity, we assume [a; b] = [0; 1] and consider a left boundary point x = �h
for � 2 [0; 1]: Then following a reasoning analogous to what we have done above, we can
obtain

MSE[�̂�(�h); ��(0)] =
1

Th2�+1
�2(0)

g(0)
e0�+1S

�1
� S��S

�1
� e�+1

+

�
hp+1��r(p+1)(0)

(p+ 1)!

�2
e0�+1S

�1
� C�C

0
�S

�1
� e�+1;

where S� ; S�� and C� are de�ned in the same way as S; S
� and C; with the lower bounds

of all integrals involved being changed from�1 to � : For example, S� is a (p+1)�(p+1)
matrix, with (i; j)-th element equal to

�i+j�2;� =

Z 1

��
ui+j�2K(u)du:

Interestingly, the biases of �̂�(x) are of the same order of magnitude no matter x
is in the interior region or in the boundary region of [a; b] = [0; 1]: (Of course, the
proportionality does depend on the location of x; namely �): Thus, the local polynomial
estimator automatically adopts to the boundary region and does not su¤er from the
boundary bias problem of the standard kernel method.

Question: What is the intuition behind this? Why does the local polynomial regression
estimator behave di¤erently from the Nadaraya-Watson estimator? The latter has a bias
equal to O(h) in the boundary region.

Answer: The key is the joint use of the local intercept and local slope (for a local linear
smoother). The latter can handle asymmetric behaviors such as those in the boundary
regions.

Theorem [Asymptotic Normality] If h = O(T 1=(2p+3)) and r(p+1)(x) is continuous,
then as T !1;

p
Th

�
H[�̂(�h)� �(0)]� hp+1r(p+1)(0)

(p+ 1)!
S�1� C�

�
!d N

�
0;
�2(0)

g(0)
S�1� S��S

�1
�

�
;
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where �(0) = [r(0); :::; r(p)(0)=p!]0: Therefore,

p
Th2�+1

�
r̂(�)(�h)� r(�)(0)� hp+1��r(p+1)(0)

(p+ 1)!

Z 1

��
up+1K�

�;� (u)du

�
! dN

�
0;
(�!)2�2(0)

g(0)

Z 1

��
K�2
�;� (u)du

�
;

where K�
�;� (u) = e0�+1S

�1
� P (u)K(u):

Proof: Similarly to the derivation of MSE for the local polynomial in the interior point.

Question: Why is the local polynomial estimator useful in economic applications?

Remarks:

(i) It avoids the boundary problem in regression estimation.
(ii) It has a smaller bias term for the regression estimator when the marginal density

f(x) of Xt is a large derivative (i.e., when f 0(x) is large), and consequently is more
e¢ cient than traditional kernel estimators (the Nadaraya-Watson estimator).

Applications of Regression Smoothing in Economics and Finance:

� Ait-Sahalia and Lo (1998, Journal of Finance): Use a multivariate kernel-based
regression estimator to estimate the option pricing function

Gt = G(Xt; Pt; � t; rt;T )

= exp[�rt;t(T � t)]

Z
Y (Pt; Xt)f

�
t (PT ;T )dPt;

where Xt is the strike price at time t; Pt is the price of the underlying asset at time
t; T is the length of maturity of the option, and rt;T is the riskfree rate at time t
with maturity T:

They then use
@2Ĝt
@2Xt

= exp[�rt;t(T � t)]f̂ �(Pt)

to obtain the risk neutral probability density estimator f̂ �(Pt); which contains rich
information about investor preferences and dynamics of data generating process.

� Ait-Sahalia (1996), Stanton (1997) and Chapman and Pearson (1999): Use non-
parametric kernel estimators r̂(Xt�1) to estimate E(XtjXt�1); where Xt is the spot
interest rate, and investigate whether the the drift function �(Xt) in the di¤usion
model

dXt = �(Xt)dt+ �(Xt)dWt;

is nonlinear.
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Questions: What are potential topics for research in time series econometrics?

Example 1: Asset Pricing Models with Time-Varying � coe¢ cients:

Xit = �i(It�1) + �0i(It�1)�t + "it; i = 1; :::; n; t = 1; :::; T;

where
E("itjIt�1) = 0 a.s.:

Constant beta vs. nonconstant beta? From the Euler equation,

�i = �i(It�1);

�i = �i(It�1)

are possibly time-varying coe¢ cients. Suppose �i = �i(Zt) and �i = �i(Zt); where Zt is
some state variable or vector in It�1. Then one can estimate �i(�) and �i(�) by solving
the problem

min
f�i;�ig

nX
i=1

TX
t=1

[Xit � �i(Zt)� �i(Zt)
0�t]

2Kh(z � Zt)

Question: What is the economic rationale that � and � are time-varying?

Reference: Kevin Wang (2002, Journal of Finance).

Example 2: Time-varying risk aversion parameter and risk premium puzzles.

Consider the problem

max
fCtg

Et

" 1X
j=0

�jU(Ct+j)

#
subject to the intertemporal budget constraint

Ct = Pt(At+1 � At) � Yt +DtAt;

where Ct is the consumption, At is a �nancial asset, Yt is the labor income, Dt is the
dividends on the asset, and Pt is the price of asset.

The Euler equation for this problem is

Et

�
�

�
U 0(Ct+1)

U 0(Ct)

��
Pt+1 +Dt+1

Pt

�
� 1
�
= 0;

where Pt+1+Dt+1
Pt

is the gross return on the asset in percentage, �U 0(Ct+1)=U 0(Ct) is the
intertemporal marginal rate of substitution, also called the stochastic discount factor.
The latter is the time-discounted risk attitude of the economic agent.

Suppose the utility function of the economic agent is

U(Ct) =
C1�
t � 1
1� 


; for 
 > 0:
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This is the so-called Constant Relative Risk Aversion (CRRA) utility function. The
parameter 
 is a measure of the degree of risk aversion.

With the CRRA utility function, the Euler equation becomes

Et

"
�

�
Ct+1
Ct

��
 �
Pt+1 +Dt+1

Pt

�
� 1
#
= 0:

The unknown parameters � and 
 can be estimated using the generalized method of
moments. The estimate for 
 is too small to justify the observed relatively large di¤erence
between stock returns and bond returns. This creates a di¢ culty called �premium
puzzles�.

Question: What is the �risk premium puzzle�?

Answer: The risk premium puzzle exists because the excess of stock returns of stock
returns over returns on investments in bills or bonds is larger than can be explained
by standard models of �rational asset�prices. This was �rst proposed by Mehra and
Prescott (1985, �The Equity Premium Puzzle�, Journal of Monetary Economics 15,
145-161).

A possible solution: Assume both � and 
 are time-varying: �t = �(It�1) and 
t =

(It�1); where It�1 is the information set. More speci�cally, we can assume �t = �(Zt)
and 
t = 
(Zt); for some unknown smooth function �(�) and 
(�); where Zt 2 It�1 is a
state vector that is expected to a¤ect both � and 
: These time-varying functions can
reveal very useful information about how the risk attitude of the economic agent changes
with the state variable or vector Zt:

Question: How to estimate �(�) and 
(�)?

Recall that the Euler equation is a conditional mean speci�cation (i.e., regression
analysis). Therefore, we can estimate �(�) and 
(�) using the local polynomial method:

min
�;


TX
t=1

"
�(Xt)

�
Ct+1
Ct

��
(Xt)�Pt+1 +Dt+1

Pt

�
� 1
#2
Kh

�
x�Xt

h

�
where �(x) and 
(x) are some low-order polynomial estimators.

Example 3: Functional-Coe¢ cient Regression Models for Nonlinear Time Series:

E(XtjIt�1) =
dX
j=1

aj(Xt�d)Xt�j:

Example 4: Volatility Smile and Correct Derivative Pricing.

Black-Scholes (1973) formula for the price of an European call option
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Assumptions:
(A1) dSt = �Stdt+ �StdWt; where Wt is the Brownian motion, and St is the under-

lying stock price;
(A2) Frictionless and complete market (no transaction costs; short sales allowed);
(A3) Constant riskfree interest rate r:
(A4) European call option: payo¤ function

�(St) = max(St �K; 0);

where K is the strike price.

Based on a no-arbitrage argument, the following European call option price can be
derived:

�c = S0�(d)�Ke�rt�(d� �
p
t);

where t = T � � t; and

d =
ln(S0=Ke

�rt)

�
p
t

+
1

2
�
p
� .

Volatility smile: �2t = �2(Kt; St; rt; � t; �t) is convex in strike price Kt if the pricing
is incorrect. If the pricing formula is correct, then �2t is a constant function of strike
price Kt: This is because �2t depends only on the data generating process and should
not depend on the strike price in any manner.

Question: Is the concept of volatility smile well-de�ned when the distribution of the
underlying asset is non-Gaussian (i.e., not log-normal)?

4 Nonparametric Estimation of Time-Varying Para-
meter Models

Example 1 [Estimation of a Slow-Varying Time Trend Function]
Suppose a time series process

Yt = f (t=T ) +Xt; t = 1; :::; T;

where f(�) is a smooth but unknown time-trend function and fXtg is a stationary process
with E(Xt) = 0:

Question: How to estimate the time trend function f(t=T )?

We can separate the smooth trend from the noisy stochastic error with smoothing
techniques.

References:
Hall and Hart (1990),
Johnstone and Silverman (1997),
Robinson (1997)
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Suppose f(�) is continuously di¤erentiable on [0,1] up to order p; and we are interested
in estimating the function f(t0=T ) at t0: We consider the local polynomial smoothing
by solving the problem

min
�

TX
t=1

"
Yt �

pX
j=0

�j

�
t� t0
T

�j#2
Kh

�
t� t0
T

�

=
TX
t=1

(Yt � �0Zt)
2
Wt;

where � = (�0; �1; :::; �p)0;

Zt =

�
1;

�
t� t0
T

�
; :::;

�
t� t0
T

�p�0
;

Wt = Kh

�
t� t0
T

�
=
1

h
K

�
t� t0
Th

�
:

Then the solution for � is

�̂ =

 
TX
t=1

ZtWtZ
0
t

!�1 TX
t=1

ZtWtYt

= (Z 0WZ)�1Z 0WY:

In particular, we have
�̂� = e0�+1�̂;

where e�+1 is a p� 1 unit vector with the �+1 element being unity and all others being
zero.

Question: What is the asymptotic properties of �̂� for 0 � � � p?

Put Ŝ = Z 0WZ 0: We �rst decompose

�̂� � �� = e0�+1Ŝ
�1

TX
t=1

ZtWtXt

+e0�+1Ŝ
�1

TX
t=1

ZtWtf

�
t

T

�
� ��

= V̂ + B̂; say:
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For the �rst term, we have E(V̂ ) = 0 given E(Xt) = 0; and

var
�
V̂
�
= E

h
e0�+1Ŝ

�1Z 0WXX 0WZŜ�1e�+1

i
= e0�+1Ŝ

�1Z 0WE (X 0X)WZŜ�1e�+1

= e0�+1Ŝ
�1

"
TX
t=1

TX
s=1

ZtWt
(t� s)Z 0sWs

#
Ŝ�1e�+1

(setting j = t� s)

= e0�+1Ŝ
�1

"
T�1X
j=1�T


(j)
TX
t=1

ZtWtZ
0
t�jWt�j

#
Ŝ�1e�+1:

By approximating the discrete sum with a continuous integral, we have

1

Th

TX
t=1

�
t� t0
Th

�j
K

�
t� t0
Th

�
!
Z 1

�1
ujK(u)du for 0 � j � 2p� 1

as h! 0; Th!1: It follows that

T�1H�1ŜH�1 = S [1 + o(1)] ;

where S is a (p+1)� (p+1) matrix with (i; j) element
R 1
�1 u

i+j�2K(u)du: Also, for each
given j; by approximating the discrete sum with a continuous integral, we have

1

Th

TX
t=1

�
t� t0
Th

�m�
t� t0 � j

Th

�l
K

�
t� t0
Th

�
K

�
t� t0
Th

�
!
Z 1

�1
um+lK2(u)du

as h! 0; Th!1: Therefore, for any given j; we obtain

T�1H�1

 
TX
t=1

ZtWtZ
0
t�jWt�j

!
H�1 = h�1S�[1 + o(1)];

where S� is a (p+ 1)� (p+ 1) matrix with the (i; j) element being
R
ui+j�2K2(u)du:

It follows that

var
�
V̂
�
=

1

Th
H�1S�1S�S�1H�1

" 1X
j=�1


(j)

#
[1 + o(1)]

=
1

Th2�+1
e0�+1S

�1S�S�1e�+1

" 1X
j=�1


(j)

#
[1 + o(1)] :

Remark: Unlike the estimator for the regression function r(Xt); the asymptotic variance
of f̂(t0=T ) depends on the serial dependence in fXtg: In other words, whether fXtg is
i.i.d. has important impact on the variance of �̂� = f̂ (�)(t0=T ):

Question: Why?
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Answer: The local polynomial estimator for f(t0=T ) is based on the observations in
the local interval [t0 � hT; t0 + hT ]: These observations maintain the same pattern of
serial dependence as the original data. As a result, the estimator depends on the serial
dependence of fXtg:

Next, for the bias, using the Taylor series expansion

f(t=T ) =

pX
j=0

1

j!
f (j)(

t0
T
)

�
t� t0
T

�j
+

1

(p+ 1)!
f (p+1)(

�t

T
)

�
t� t0
T

�p+1
;

where �t = �t+ (1� �)t0; we have

B̂ = e0�+1Ŝ
�1

TX
t=1

ZtWtf

�
t

T

�
� ��

=
1

(p+ 1)!
e0�+1Ŝ

�1
TX
t=1

ZtWh

�
t� t0
T

�p+1
f (p+1)

�
�t

T

�

=
hp+1

(p+ 1)!
e0�+1H

�1
�
H�1ŜH�1

��1
H�1

TX
t=1

ZtWh

�
t� t0
Th

�p+1
f (p+1)

�
�t

T

�
=

hp+1��f (p+1)( t0
T
)

(p+ 1)!
e0�+1S

�1C [1 + o(1)] ;

where C is a (p+ 1)� 1 vector with the i-th element being
R 1
�1 u

p+2�iK(u)du: Here, we
have used a continuous integral to approximate a discrete sum:

1

Th

TX
t=1

�
t� t0
Th

�j
K

�
t� t0
Th

�
!
Z 1

�1
ujK(u)du:

It follows that the MSE of �̂� is

MSE(�̂� ; ��) =
1

Th2�+1
�
e0�+1S

�1S�S�1e�+1
� " 1X

j=�1

(j)

#

+h2(p+1��)

"
f (p+1)

�
t0
T

�
(p+ 1)!

#2 �
e0�+1S

�1C
�2

+o(T�1h�2��1 + h2(p+1��)):

Asymptotic Distribution

Example 2 [Estimation of Locally Stationary Processes]

Question: How to model smooth time changes in a system such as an economic system?
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Yt = X 0
t�+ "t

We consider a locally stationary process

Yt = X 0
t�

�
t

T

�
+ "t; t = 1; :::; T;

where Yt is a scalar, Xt is a (d+1)�1 random vector, and �(t=T ) is a (d+1)�1 smooth
function of t:

Question: Why smooth changes?
Answer:

(i) Structral changes/breaks are rather a rule than an exception, due to advances in
technology, changes in preferences, and institutional changes in the economic system.
(ii) It takes time for economic agents to react to sudden shocks, because it takes time

for economic agents to collect information needed for making decisions, and it takes time
for markets to reach some consensus due to heterogeous beliefs.
(iii) Even if individual agents can respond immediately to sudden changes, the ag-

gregated economic variables (such as consumption) over many individuals will become
smooth.

Alfredo Marshall: Economic changes are evolutionary.

Question: How to estimate the changing coe¢ cients �(t=T )?

Remark: This model is potentially useful for macroeconomic applications and for long
time series data.

Put Zt =
�
1; t�t0

T
; :::;

�
t�t0
T

�p�
; and

Qt = Zt 
Xt

is a (d+ 1)(p+ 1)� 1 vector. Then we consider

TX
t=1

"
Yt �

dX
j=0

�0jtXjt

#2
=

TX
t=1

"
Yt �

dX
j=0

�00jZtXjt

#2

=
TX
t=1

[Yt � �0(Zt 
Xt)]
2

=
TX
t=1

[Yt � �0Qt]
2
;

where � = (�00; �
0
1; :::; �

0
p)
0 is a (d + 1)(p + 1)� 1 vector, �j is a d� 1 coe¢ cient vector

for ( t�t0
T
)jXt.
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The local polynomial estimator

�̂ =

"
TX
t=1

QtWtQ
0
t

#�1 TX
t=1

QtWtYt

=

"
TX
t=1

Zt 
XtWtX
0
t 
 Z 0t

#�1 TX
t=1

Zt 
XtWtYt:

The estimator for �(t0=T ) is then given by

�̂0 = (Id 
 e�+1)
0�̂:

By plotting the �̂0 as a function of t0; we can examine whether the coe¢ cient � is
time-varying.

5 Nonparametric Kernel Method in
Frequency Domain

Questions: Given fXtgTt=1;

� How to estimate the power spectrum h(!) of fXtg?

� How to estimate the bispectrum b(!1; !2) of fXtg?

� How to estimate the generalized spectrum f(!; u; v) of fXtg?

5.1 Periodogram and Motivation

Parametric Approach

For simplicity of analysis, we assume � � E(Xt) = 0 and we know it. Then the
sample autocovariance function


̂(j) = T�1
TX

t=jjj+1

XtXt�jjj; j = 0;�1; :::;�(T � 1):

(If � is unknown, we should use the sample autocovariance function


̂(j) = T�1
tX

t=jjj+1

(Xt � �X)(Xt�jjj � �X);

where �X is the sample mean. The asymptotic analysis is a bit more tedious but the
same results can be obtained.)
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Recall the power spectral density

h(!) =
1

2�

1X
j=�1


(j)e�ij!:

For a white noise(0; �2) process, the spectral density

h(!) =
1

2�

(0);

where 
(0) = var(Xt): A spectral estimator is

ĥ(!) =
1

2�

̂(0):

For an MA(1) process, the spectral density

h(!) =
1

2�

(0) +

1

�

(1) cos(!):

A spectral estimator is

ĥ(!) =
1

2�

̂(0) +

1

�

̂(1) cos(!):

For an ARMA(p; q) process, the spectral density

h(!) =
�2

2�

����� 1 +
Pq

j=1 �je
�ij!

1�
Pp

j=1 �je
�ij!

�����
2

A spectral estimator is

ĥ(!) =
�̂2

2�

����� 1 +
Pq

j=1 �̂je
�ij!

1�
Pp

j=1 �̂je
�ij!

�����
2

where (�̂j; �̂j) are parameter estimators, and

�̂2 =
1

T

TX
t=max(p;q)+1

"̂2t ;

where

"̂t = Xt �
pX
j=1

�̂jXt�j �
qX
j=1

j �̂j "̂t�j;

with "̂t = 0 if t � 0:
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For a general linear process (or when we do not know what process Xt is), we may
like to use the spectral density estimator

ĥ(!) =
1

2�

T�1X
j=1�T


̂(j)e�ij!

=
1

2�

̂(0) +

1

�

T�1X
j=1


̂(j)e�ij!

=
1

2�T

�����
TX
t=1

Xte
it!

�����
2

� ÎT (!):

Remark: ÎT (!) is the so-called periodogram of fXtgTt=1: It is the squared modulus of
the discrete Fourier transform of data fXtgTt=1: Please check that the last equality holds.

Remark: Unfortunately, this estimator is not consistent for h(!): Why?

For example, consider the simplest case when fXtg is i.i.d. Then we have h(!) =
1
2�

(0), and

Eĥ(!) =
1

2�

(0) = h(!)

so the bias Eĥ(!)� h(!) = 0 for all ! 2 [��; �]:
On the other hand, under the i.i.d. condition, we have

cov[
p
T 
̂(i);

p
T 
̂(j)] =

�
(1� jij=T )
2(0) if i = j;

0 if i 6= j:

It follows that

var[ĥ(!)] =
1

(2�)2
var[
̂(0)]

+
1

(�)2

T�1X
j=1

var[
̂(j)] cos2(j!)

= C0
1

T
+ C1

1

T

T�1X
j=1

cos2(j!)

= C0
1

T
+ C1 �

1

2
= O(1):

Remark: The variance var[ĥ(!)] never decays to 0.

Why? Too many estimated coe¢ cients f
̂(j)gT�1j=0 ! There are T estimated coe¢ cients.
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Alternative Explanation: Integrated MSE (IMSE)

IMSE(ĥ; h)

= E

Z �

��

���ĥ(!)� h(!)
���2 d!

= E

Z �

��

���ĥ(!)� Eĥ(!)
���2 d!

+

Z �

��

���Eĥ(!)� h(!)
���2 d!

= V ariance + Bias2

= E

"
1

2�

T�1X
j=1�T

[
̂(j)� E
̂(j)]2

#

+

24 1
2�

X
jjj<T

[E
̂(j)� 
(j)]2 +
1

2�

X
jjj�T


2(j)

35 ;
by orthogonality of exponential bases feij!g; or the so-called Parseval�s identity.
Note that E
̂(j) = T�1

PT
t=jjj+1E(XtXt�jjj) = (1 � jjj=T )
(j); so we have the bias

square X
jjj<T

[E
̂(j)� 
(j)]2 =
X
jjj<T

(j=T )2
2(j)! 0

if
P1

j=�1 

2(j) <1: Next, we have for the last term

P
jjj>T 


2(j)! 0 as T !1:
What is the variance?

T�1X
j=1�T

E[
̂(j)� E
̂(j)]2 =
T�1X
j=1�T

var[
̂(j)]

= O(1):

because E[
̂(j)�E
̂(j)]2 = CT�1 under certain regularity conditions, for some C > 0:

Remark: The variance of the periodogram ÎT (!) does not vanish.

5.2 Kernel Spectral Estimation

Question: What is a solution to the inconsistency of the periodogram ÎT (!)?

Truncation

In response to the fact that the periodogram is not consistent for h(!) because it
contains �too many�estimated parameters, one can consider a truncated spectral density
estimator,

ĥ(!) =
1

2�

pX
j=�p


̂(j)e�ij!; ! 2 [��; �];
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where p!1; p=T ! 0:

Remark: The truncated spectral density estimator was used by Hansen (1980) and
White and Domowitz (1984) to estimate the asymptotic variance-covariance matrix of
some econometric estimator (e.g., GMM, OLS), which is proportiomal to the spectral
density of certain time series process at frequency zero. However, such an estimator
may not be positive semi-de�nite in �nite samples. This may cause some trouble in
application.

We can use a weighted estimator. Consider

ĥ(!) =
1

2�

pX
j=�p

k(j=p)
̂(j)e�ij!;

where k(�) is a kernel function or lag window. An example is the Bartlett kernel

k(z) = (1� jzj)1(jzj � 1):

where 1(�) is the indicator function. This is used in Newey and West (1987). The
Bartlett kernel-based spectral density estimator at frequency zero is always positive
semi-de�nite.

Remark: This is used in the so-called Newey-West (1987, Econometrica, 1994, Review
of Economic Studies) variance-covariance estimator.

Question: What is the advantage of introducing the kernel function k(�)?

Answer: This reduces the variance of ĥ(!).

Intuition: For a weakly stationary process with square-summable autocovariances,
serial correlation decays to zero as lag j increases. This is consistent with the stylized
fact that the remote past events have smaller impact on the current economic systems
and �nancial markets than the recent events. Given this, it makes sense to discount
higher order lags, namely to discount remote past events.

More generally, we can consider

ĥ(!) =
1

2�

T�1X
j=1�T

k(j=p)
̂(j)e�ij!; ! 2 [��; �];

where k(�) is allowed to have unbounded support, so that all T�1 sample autocovariances
are used in spectral estimation. An example is the Daniel kernel

k(z) =
sin(�z)

�z
; z 2 R:

As will seen below, the optimal kernel that minimizes the MSE of the kernel spectral
density estimator ĥ(!) also has unbounded support (see the Qaudratic-Spectral kernel
below).
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Remark: Now p is no longer a lag order but a smoothing parameter.

Assumption on k(�) : The kernel function k(�) is a symmetric function that is con-
tinuous at all but a �nite number of points, such that (i) jk(z)j � 1; (ii) k(0) = 1;(iii)R
k2(z)dz <1; and (iv) there exists a positive real number q such that

0 < kq = lim
z!0

k(0)� k(z)

jzjq <1:

Remark: For the Bartlett kernel, q = 1: For the Daniell kernel, q = 2:

Examples of k(�):
1. Bartlett kernel

k(z) = (1� jzj)1(jzj � 1):
Its Fourier transform

K(u) =
1

2�

�
sin(u=2)

u=2

�2
:

2. Daniell kernel

k(z) =
sin(�z)

�z
:

Its Fourier transform
K(u) =

1

2�
1(juj � �):

3. Parzen kernel

k(z) =

8<:
1� 6z2 + 6jzj3 jzj � 1

2

2(1� jzj)3 1
2
� jzj < 1:

0 otherwise.

Its Fourier transform

K(u) =
3

8�

�
sin(u=4)

u=4

�4
:

4. Quadratic-Spectral kernel (Priestley)

k(z) =
3

(�z)2

�
sin �z

�z
� cos(�z)

�
:

Its Fourier transform

K(u) =
3

4�
[1� (u=�)2]1(juj � �):

5. Truncated kernel
k(z) = 1(jzj � 1):

Its Fourier transform
K(u) =

1

�

sinu

u
:

Remark: The kernel function k(�) used for spectral density estimation is the Fourier
transform of a kernel function K(�) used in probability density/regression function esti-
mation.
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5.3 Consistency of Kernel Spectral Estimators

Question: Why is the kernel spectral estimator ĥ(!) consistent for h(!)?

We consider the integrated MSE criterion

IMSE(ĥ; h) = E

Z �

��

���ĥ(!)� h(!)
���2 d!

= E

Z �

��

���ĥ(!)� Eĥ(!)
���2 d!

+

Z �

��

���Eĥ(!)� h(!)
���2 d!

= V ariance + Bias2

We �rst consider the bias of ĥ(!):
Given E
̂(j) = (1� jjj=T )
(j); we have

Eĥ(!)� h(!) =
1

2�

T�1X
j=1�T

k(j=p)E
̂(j)e�ij!

� 1

2�

1X
j=�1


(j)e�ij!

=
1

2�

T�1X
j=1�T

[(1� jjj=T )k(j=p)� 1]
(j)e�ij!

� 1

2�

X
jjj>T�1


(j)e�ij!

=
1

2�

T�1X
j=1�T

[k(j=p)� 1]
(j)e�ij!

� 1

2�T

T�1X
j=1�T

k(j=p)jjj
(j)e�ij!

� 1

2�

X
jjj>T�1


(j)e�ij!

= �p�qkqh(q)(!) + o(p�q);

where o(p�q) is uniform in ! 2 [��; �]: Here, for the �rst term,

1

2�

T�1X
j=1�T

[k(j=p)� 1]
(j)e�ij!

= �p�q 1
2�

T�1X
j=1�T

�
[1� k(j=p)]

jj=pjq

�
jjjq
(j)e�ij!

= �p�qkqh(q)(!)
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as p!1; where, as de�ned earlier, kq = lim[1� k(z)]=jzjq; and the function

h(q)(!) =
1

2�

1X
j=�1

jjjq
(j)e�ij!; ! 2 [��; �];

is called the q-th order generalized derivative of h(!): Note that h(q)(!) di¤ers from the
usual derivative. When q is even, we have

h(q)(!) = � 1
q!

dq

d!q
h(!):

Note that a spectral peak will arise wen 
(j) decays to zero slowly as the lag order
j !1:
Next, we consider the second term of the bias. For the second term, we have

1

2�T

�����
T�1X
j=1�T

k(j=p) jjj 
(j)e�ij!
����� � 1

2�T

T�1X
j=1�T

jjj j
(j)j

= O(T�1)

if
PT�1

j=1�T jjj j
(j)j <1:
Similarly, the last term

������
X
jjj>T


(j)e�ij!

������ �
X
jjj>T

j
(j)j

� T�1
T�1X
jjj>T

jjj j
(j)j

= o(T�1)

given
P1

j=�1 jjj � j
(j)j <1; which implies
P

jjj>T jjj j
(j)j ! 0 as T !1:

Thus, suppose T�1 = o(p�q); which can be satis�ed by choosing a suitable bandwidth
p; we have

Eĥ(!)� h(!) = �p�qkqh(q)(!) + o(p�q)

and Z �

��

h
Eĥ(!)� h(!)

i2
d!

= p�2qk2q

Z �
h(q)(!)

�2
d! + o(p�2q)

= p�2qk2q
1

2�

1X
j=�1

jjj2q
2(j) + o(p�2q):
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Remarks:
(i) If h(q)(!) > 0; then the bias is always negative. In other words, the kernel method

always underestimate spectral peaks.
(ii) There is no boundary bias problem, because ĥ(�) is a symmetric periodic function.

Next, for the variance of ĥ(!); we have

E

Z
[ĥ(!)� Eĥ(!)]2d!

=

(
1

2�

T�1X
j=1�T

k2(j=p)E[
̂(j)� E
̂(j)]2

)

=
p

T

Z �

��
h2(!)d!

Z 1

�1
k2(z)dz[1 + o(1)]:

E[
̂(j)� E
̂(j)]2 = var[
̂(j)]

~
1

T

Z
h2(!)d!

=
1

T
�1j=�1


2(j)

Here, we have used the identity (see Priestley, 1981, p.) that

var[
̂(j)]

= T�1
T�j�1X

m=1�(T�j)

�
1� jmj+ j

T

� �

2(m) + 
(m+ j)
(m� j) + �4(m; j;m+ j)

�
;

where �4(i; j; k) is called the fourth order cumulant of the process fXtg, de�ned as

�4(i; j; k) = E(XtXt+iXt+jXt+k)� E( ~Xt
~Xt+i

~Xt+j
~Xt+k)

where f ~Xtg is a Gaussian process with the same mean and covariance as fXtg: It follows
that

1

(2�)

T�1X
j=1�T

k2(j=p)var[
̂(j)]

=
1

(2�)

T�1X
j=1�T

k2(j=p)T�1
T�j�1X

m=1�(T�j)

�
1� jmj+ j

T

�

2(m)

+
1

(2�)

T�1X
j=1�T

k2(j=p)T�1
T�j�1X

m=1�(T�j)

�
1� jmj+ j

T

�

(m+ j)
(m� j)

+
1

(2�)

T�1X
j=1�T

k2(j=p)T�1
T�j�1X

m=1�(T�j)

�
1� jmj+ j

T

�
�4(m; j;m+ j)

= V̂1 + V̂2 + V̂3;
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where

V̂1 =
p

T

1

2�

1X
m=�1


2(m)

"
1

p

T�1X
j=1�T

k2(j=p)

#

=
p

T

Z �

��
h2(!)d!

Z 1

�1
k2(z)dz[1 + o(1)];

jV̂2j �
1

T

1X
j=�1

j
(j)j
1X

m=�1
j
(m)j = O(T�1)

if
P1

m=�1 j
(m)j <1; and �nally, for the last term,

jV̂3j �
1

T

1X
j=�1

1X
l=�1

1X
k=�1

j�4(i; j; k)j = O(T�1):

It follows that the IMSE

IMSE(ĥ; h) =
p

T

Z �

��
h2(!)d!

Z 1

�1
k2(z)dz

+p�2qk2q

Z �

��

�
h(q)(!)

�2
d!

+o(p=T + p�2q)

=
p

T

1

2�

1X
j=�1


2(j)

Z 1

�1
k2(z)dz

+p�2qk2q
1

2�

1X
j=�1

jjj2q
2(j)

+o(T�1p+ p�2q)

= O(p=T + p�2q):

Remark :
(i) ĥ(!) is consistent for h(!) for any ! 2 [��; �] if p=T ! 0; p!1:
(ii)The optimal bandwidth

p0 =

�
2qk2qR
k2dz

R
[h(q)(!)]2d!R
h2(!)d!

� 1
2q+1

T
1

2q+1

= c0T
1

2q+1 :

With this rate for p, the optimal convergence rate for h(!) is IMSE(ĥ; h) / T�
2q

2q+1 :
This optimal bandwidth is unknown. Again, the plug-in method can be used.
(iii) The optimal kernel is the Quadratic-Spectral kernel

k(z) =
z

(�z)2

�
sin(�z)

�z
� cos(�z)

�
:
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Note that the Fourier transform of the QS kernel is the Epanechnikov kernel

K(u) =
1

4�

�
1�

�u
�

�2�
1(juj � �):

Question: What is the relationship between K(u) and k(z)? They are Fourier trans-
forms of each other:

K(u) =
1

2�

Z 1

�1
k(z)e�izudz;

k(z) =

Z 1

�1
K(u)eiuzdu:

(i) k(0) = 1 is equivalent to
R1
�1K(u)du = 1:

(ii)
R1
�1 k

2(z)dz = 2�
R1
�1K

2(u)du: (How to prove this?)

(iii) When q = 2; k2 � limz!0
1�k(z)
z2

= �1
2
k00(0) = 1

2

R1
�1 u

2K(u)du:

(iv) k(z) symmetric, then K(u) is symmetric. So
R1
�1 uK(u)du = 0:

Question: Is there any equivalent expression for ĥ(!) using K(u)?

Answer: Yes, recall

ĥ(!) =
1

2�

T�1X
t=1�T

k(j=p)
̂(j)e�ij!; ! 2 [��; �];

and the well-known result that the Fourier transform of the product between 
̂(j) and
k(j=p) is the convolution of their Fourier transforms, we can obtain

ĥ(!) =
1

2�

T�1X
j=1�T

k(j=p)
̂(j)e�ij!

=

Z �

��
Î(�)WT (! � �)d�

=

Z �

��
Î(�)pK[p(! � �)]d�

=

Z �

��
Î(�)

1

h
K

�
! � �

h

�
d�;

where h = p�1; Î(�) is the periodogram,

Î(�) =
1

2�T

�����
TX
t=1

Xte
it!

�����
2

=
1

2�

T�1X
j=1�T


̂(j)e�ij!
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which is the discrete Fourier transform of 
̂(j); and

WT (�) =
1

2�

T�1X
j=�(T�1)

k(j=p)e�ij�

= p

"
1

2�p

1X
j=�1

k(j=p)e�i(j=p)p�

#

= p
1X

j=�1
K[p(�+ 2�j)]

� pK(p�);

which is the discrete Fourier transform of k(�):

Remark: The periodogram Î(�) is the discrete Fourier transform of the observed data.

Question: When

p
1X

j=�1
K[p(�+ 2�j)] = pK(p�); � 2 [��; �]?

Answer: When K(�) has bounded support on [��; �] and p is large (then the terms
with j 6= 0 will vanish).

Remark : p = h�1; the inverse of the bandwidth.

Remark : Î(�) is a (discrete) Fourier transform of 
̂(j), and WT (�) is the (discrete)
Fourier transform of k(j=p): The Fourier transform of the product between 
̂(j) and
k(j=p) is the convolution of their Fourier transforms.

Remark: WT (�) plays a role of local weighting and smoothing.

Geometric interpretation of ĥ(!) =
R �
�� Î(�)pK[p(! � �)]d�:

Remark: Downward bias:

Eĥ(!)� h(!) = �p�qkqh(q)(!) + o(p�q):

This can be large when there is a spectral speak at frequency !. What is the alternative
estimation method?

Granger (1966): The typical spectral shape of most economic time series is that it has
a peak at frequency zero and then decays to zero as frequency increases.

Question: How to reduce the bias?
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(i) Pre-whitening.

Tukey (1957), Andrews and Monahan (1992)

Consider an AR approximation:

Xt =

mX
j=1

 jXt�j + ut

= 	(L)Xt + ut:

Then futg will have weaker serial dependence and

ut = 	(L)Xt:

hu(!) = j	(e�i!)j2hX(!):
Thus,

hX(!) = j	(e�i!)j�2hu(!):
Remarks:
(i) We �rst run a prewhitening regression, and obtain f	̂jgmj=1:
(ii) Then use the kernel method to estimate hu(!) using the prewhitening residual

fûtg:
(iii) Obtain ĥ(!) = j	̂(e�i!)j�2ĥu(!): This is called �recoloring�.
The spectral density hu(!) is easier to estimate because it is ��atter�than h(!):

Remark: The bias is reduced substantially but the variance is increased at the same
time. As a consequence, MSE may be larger than that without using prewhitening.

(ii) Logarithmic transformation

Put �k = 2�k=T for k = 0; :::; [T�12 ]: This is the so-called Fourier frequency. Then

ÎT (�k) = f(�k)Vk +Rk;

where

Vk =
1

2�T

�����
TX
t=1

"te
it�k

�����
2

is the periodogram of an innovation sequence f"tgTt=1; and Rk is an asymptotically neg-
ligible term. For 0 < k < [T�1

2
]:

(iii) Wavelet analysis

References:
Härdle, W., G. Kerkyacharian, D. Picard and A. Tsybakov (1998), Wavelets, Ap-

proximation and Statistical Applications, Lecture Notes in Statistics Volume 129.
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Hong, Y. and D. Kao (2004, Econometrica), Hong and Lee (2001, Econometric The-
ory), Lee and Hong (2001, Econometric Theory)

Question: How to estimate the generalized spectrum f(!; u; v)?

Kernel Method

f̂(!; u; v) =
1

2�

T�1X
j=1�T

(1� jjj=T )1=2k(j=p)�̂j(u; v)e�ij!;

where
�̂j(u; v) = '̂j(u; v)� '̂j(u; 0)'̂j(0; v);

and

'̂j(u; v) = (T � jjj)�1
TX

t=jjj+1

eiuXt+ivXt�jjj

is the empirical characteristic function of (Xt; Xt�jjj):

Question: Why an additional factor (1� jjj=T )?

Answer: It is introduced to improve the �nite sample performance because '̂j(u; v) is
based on the normalization T � jjj instead of T:

Question: How to estimate the bispectrum b(!1; !2)?

b̂(!1; !2) =
1

(2�)2

T�1X
j=1�T

T�1X
l=1�T

k(j=p)k(l=p)k[(j � l)=p]Ĉ(0; j; l)eij!1+il!2 :

Question: How to �nd the variance and the bias of b̂(!1; !2)?

Answer: Suppose k2 = lim
1�k(z)
jzj2 2 (0;1): Then the bias

E
h
b̂(!1; !2)

i
� b(!1; !2) = �

1

2

k2
p2
D(2)(!1; !2) +O(p�3)

where

D2(!1; !2) =

�
@2

@!21
� @2

@!1@!2
+

@2

@!22

�
b(!1; !2):

See Subba Rao and Gabr (1984) for the derivation of the bias.

For the variance,

var
h
b̂(!1; !2)

i
=
p2

T

V

2�
h(!1)h(!2)h(!1 + !2) [1 + o(1)] ;

where

V =

Z 1

�1

Z 1

�1
k2(u)k2(v)k2(u� v)dudv:

See Brillinger and Rosenblatt (1967a) for the derivation of the variance.

Remark: b̂(!1; !2) is consistent for b(!1; !2) if p!1; p2=T ! 0 as T !1:
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Exercise 6

1. What are the main advantages of nonparametric smoothing methods in time series
econometrics? Why has nonparametric methods become popular in the recent
years?

2. What is the boundary problem for the kernel smoothing method? How can one
alleviate this boundary problem?

3. What is the curse of dimensionality associated with nonparametric smoothing?

4. Why can the local linear smoother automatically solve for the boundary bias prob-
lem in nonparametric regression estimation?

5. Suppose fXtgTt=1 is an i.i.d. random sample with a twice continuously di¤erentiable
marginal density function g(x) on support [a; b]: De�ne the kernel density estimator

ĝ(x) =
1

T

TX
t=1

Kh(x�Xt);

where Kh(x �Xt) = h�1K[(x �Xt)=h], K(�) is a standard kernel (usually called
second order kernel or positive kernel) with support on [�1; 1] such that , and
h = h(T )! 0 is a bandwidth.

(a) For x 2 [a+ h; b� h]; derive the asymptotic bias expression for Eĝ(x)� g(x):

(b) For x 2 [a+h; b�h]; derive the asymptotic variance expression for var(ĝ(x)) =
E[ĝ(x)� Eĝ(x)]2:

(c) Find the asymptotic expression for the mean squared error MSEE[ĝ(x)�g(x)]2:
(d) Derive the optimal bandwidth h� that maximizes the asymptotic MSE of ĝ(x):

(e) What is the asymptotic MSE when evaluated at the optimal bandwidth h�:

6. SupposeK(�) is a higher order (q-th order) kernel such that
R 1
�1K(u)du = 1;

R 1
�1 u

jK(u)du =

0 for 1 � j � q � 1;
R 1
�1 u

qK(u)du = CK(q) and
R 1
�1K

2(u)du = DK : In addition,
assume that g(x) is q-time continuously di¤erentiable on [a; b]: Answer (a)�(e) in
Question #5 again.

7. In the setup of Question #5, further assume g(x) � � > 0 for some constant � > 0:
Consider the asymptotic bias of ĝ(x) for x = a+ �h 2 [a; a+ h] for � 2 [0; 1):
(a) Show that supx2[a;a+h] jEĝ(x)� g(x)j never vanishes to zero as h!1:

(b) There are several approaches to deal with the boundary bias problem in (a).
One simple way is to consider the following kernel estimator

ĝ(x) =
1

T

TX
t=1

Kh(x;Xt);
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where

Kh(x; y) �

8><>:
h�1K

�
x�y
h

�
=
R 1
�(x=h)K(u)du; if x 2 [0; h);

h�1K
�
x�y
h

�
; if x 2 [h; 1� h];

h�1K
�
x�y
h

�
=
R (1�x)=h
�1 K(u)du; if x 2 (1� h; 1]

and K(�) is a standard kernel. This estimator di¤ers from the estimator in Ques-
tion #5 in the boundary regions but not in the interior regions. Show that
supx2[a;a+h) jEĝ(x)� g(x)j ! 0 as h! 0:

8. One method to deal with the boundary bias problem of kernel estimation is the
so-called re�ection method. This method constructs the kernel density estimate
based on the �re�ected�data f�XtgTt=1 and the original data fXtgTt=1: Suppose Xt

has a twice-continuously di¤erentiable marginal pdf g(x) with the support [a; b];
and x is a left boundary point in [a; a+ h) and x � 0: Then the re�ection method
uses an estimator

ĝ(x) =
1

T

TX
t=1

Kh(x�Xt) +
1

T

TX
t=1

Kh[x� (�(Xt � a))];

where Kh(x � Xt) = h�1K[(x � Xt)=h]; K : [�1; 1] ! R+ is a pre-speci�ed
symmetric pdf with support [�1; 1] and h is the bandwidth. Find the bias Eĝ(x)�
g(x) for (a) x 2 [a; a+ h); (b) x 2 [ah; b� h]:

9. Suppose a data generating process is given by

Yt = 1 +Xt � 0:25X2
t + "t; t = 1; :::; T;

where fXtg � i.i.d.U[0; 2
p
3], f"tg � i.i.d.N(0,1), and fXtg and f"tg are mutually

independent.

(a) Generate a data fYt; XtgTt=1 with T = 200 using a random number generator on
a computer, and plot the sample point on the xy-plane, and plot the true regression
function r(x) = E(YtjXt = x).

(b) Use a Nadaraya-Watson estimator to estimate the regression function r(Xt) =
E(YtjXt) on 100 equally spaced grid points on [0; 2

p
3]: Use the quatic kernel

K(u) = 15
16
(1 � juj2)21(juj � 1) and choose the bandwidth h = SXT

� 1
5 ; where

SX is the sample standard deviation of fXtgTt=1: Plot the estimator r̂(x) on the
xy-plane.

(c) Use a local linear estimator to estimate the regression function r(x) on 100
equally spaced grid points on [0; 2

p
3]; with the same kernel K(�) and bandwidth

h as in part (b). Plot the estimator for r(x) on the xy-plane.

10. Again, in the setup of Question #1, further assume g(x) � � > 0 for some constant
� > 0: Consider the asymptotic bias of ĝ(x) for x = a+�h 2 [a; a+h] for � 2 [0; 1):
Another method to deal with the boundary bias problem is to use the so-called
jackknife kernel method.
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(a) For x = a+ �h 2 [a; a+ h); we consider an estimator

�g(x) = ĝ(x;h) + � [ĝ(x;h)� ĝ(x;�h)] ;

where

ĝ(x;h) =
1

T

TX
t=1

h�1K�

�
x�Xt

h

�
;

K�(u) � K(u)

!K(0; �)
;

and !K(i; �) =
R 1
�� u

iK(u)du for i = 0; 1; 2:

Now de�ne a new kernel (called jackknife kernel)

KJ
� (u) = (1 + �)K�(u)�

�

�
K �

�
(
u

�
)

where � is the same as in �g(x): Show that

�g(x) =
1

T

TX
t=1

h�1KJ
�

�
x�Xt

h

�
:

(b) Find the expression for � in terms of !K(�; �) and � such that supx2[a;a+h) jE�g(x)�
g(x)j = O(h2):

(c) Suppose now x = b � �h 2 (b � h; b]: Can we use �g(x) and get an asymptotic
bias of order O(h2): If yes, verify it; if not, derive an estimator so that you can
obtain an O(h2) bias for x 2 (b� h; b].
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EXERCISE 6
1. Suppose fXtgTt=1 is an i.i.d. random sample with a twice continuously di¤erentiable
marginal density function g(x) on support [a; b]: De�ne the kernel density estimator

ĝ(x) =
1

T

TX
t=1

Kh(x�Xt);

where Kh(x �Xt) = h�1K[(x �Xt)=h], K(�) is a standard kernel (usually called
second order kernel or positive kernel) with support on [�1; 1] such that , and
h = h(T )! 0 is a bandwidth.

(a) For x 2 [a+ h; b� h]; derive the asymptotic bias expression for Eĝ(x)� g(x):

(b) For x 2 [a+h; b�h]; derive the asymptotic variance expression for var(ĝ(x)) =
E[ĝ(x)� Eĝ(x)]2:

(c) Find the asymptotic expression for the mean squared error MSEE[ĝ(x)�g(x)]2:
(d) Derive the optimal bandwidth h� that maximizes the asymptotic MSE of ĝ(x):

(e) What is the asymptotic MSE when evaluated at the optimal bandwidth h�:

SupposeK(�) is a higher order (q-th order) kernel such that
R 1
�1K(u)du = 1;

R 1
�1 u

jK(u)du =

0 for 1 � j � q � 1;
R 1
�1 u

qK(u)du = CK(q) and
R 1
�1K

2(u)du = DK : In addition,
assume that g(x) is q-time continuously di¤erentiable on [a; b]: Answer (a)�(e) in
Question #1 again.

2. In the setup of Question #1, further assume g(x) � � > 0 for some constant � > 0:
Consider the asymptotic bias of ĝ(x) for x = a+ �h 2 [a; a+ h] for � 2 [0; 1):
(a) Show that supx2[a;a+h] jEĝ(x)� g(x)j never vanishes to zero as h!1:

(b) There are several approaches to deal with the boundary bias problem in (a).
One simple way is to consider the following kernel estimator

ĝ(x) =
1

T

TX
t=1

Kh(x;Xt);

where

Kh(x; y) �

8><>:
h�1K

�
x�y
h

�
=
R 1
�(x=h)K(u)du; if x 2 [0; h);

h�1K
�
x�y
h

�
; if x 2 [h; 1� h];

h�1K
�
x�y
h

�
=
R (1�x)=h
�1 K(u)du; if x 2 (1� h; 1]

and K(�) is a standard kernel. This estimator di¤ers from the estimator in Ques-
tion #1 in the boundary regions but not in the interior regions. Show that
supx2[a;a+h) jEĝ(x)� g(x)j ! 0 as h! 0:
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3. One method to deal with the boundary bias problem of kernel estimation is the
so-called re�ection method. This method constructs the kernel density estimate
based on the �re�ected�data f�XtgTt=1 and the original data fXtgTt=1: Suppose Xt

has a twice-continuously di¤erentiable marginal pdf g(x) with the support [a; b];
and x is a left boundary point in [a; a+ h) and x � 0: Then the re�ection method
uses an estimator

ĝ(x) =
1

T

TX
t=1

Kh(x�Xt) +
1

T

TX
t=1

Kh[x� (�(Xt � a))];

where Kh(x � Xt) = h�1K[(x � Xt)=h]; K : [�1; 1] ! R+ is a pre-speci�ed
symmetric pdf with support [�1; 1] and h is the bandwidth. Find the bias Eĝ(x)�
g(x) for (a) x 2 [a; a+ h); (b) x 2 [ah; b� h]:

4. Suppose a data generating process is given by

Yt = 1 +Xt � 0:25X2
t + "t; t = 1; :::; T;

where fXtg � i.i.d.U[0; 2
p
3], f"tg � i.i.d.N(0,1), and fXtg and f"tg are mutually

independent.

(a) Generate a data fYt; XtgTt=1 with T = 200 using a random number generator on
a computer, and plot the sample point on the xy-plane, and plot the true regression
function r(x) = E(YtjXt = x).

(b) Use a Nadaraya-Watson estimator to estimate the regression function r(Xt) =
E(YtjXt) on 100 equally spaced grid points on [0; 2

p
3]: Use the quatic kernel

K(u) = 15
16
(1 � juj2)21(juj � 1) and choose the bandwidth h = SXT

� 1
5 ; where

SX is the sample standard deviation of fXtgTt=1: Plot the estimator r̂(x) on the
xy-plane.

(c) Use a local linear estimator to estimate the regression function r(x) on 100
equally spaced grid points on [0; 2

p
3]; with the same kernel K(�) and bandwidth

h as in part (b). Plot the estimator for r(x) on the xy-plane.

5. 6. Again, in the setup of Question #1, further assume g(x) � � > 0 for some
constant � > 0: Consider the asymptotic bias of ĝ(x) for x = a + �h 2 [a; a + h]
for � 2 [0; 1): Another method to deal with the boundary bias problem is to use
the so-called jackknife kernel method.

(a) For x = a+�h 2 [a; a+h); we consider a �g(x) = ĝ(x;h)+� [ĝ(x;h)� ĝ(x;�h)] ;
where

ĝ(x;h) =
1

T

TX
t=1

h�1K�

�
x�Xt

h

�
;

K�(u) � K(u)

!K(0; �)
;

and !K(i; �) =
R 1
�� u

iK(u)du for i = 0; 1; 2:
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Now de�ne a new kernel (called jackknife kernel)

KJ
� (u) = (1 + �)K�(u)�

�

�
K �

�
(
u

�
)

where � is the same as in �g(x): Show that

�g(x) =
1

T

TX
t=1

h�1KJ
�

�
x�Xt

h

�
:

(b) Find the expression for � in terms of !K(�; �) and � such that supx2[a;a+h) jE�g(x)�
g(x)j = O(h2):

(c) Suppose now x = b � �h 2 (b � h; b]: Can we use �g(x) and get an asymptotic
bias of order O(h2): If yes, verify it; if not, derive an estimator so that you can
obtain an O(h2) bias for x 2 (b� h; b].
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