
14.12 Game Theory Lecture Notes 

Reputation and Signaling 

In these notes, we discuss the issues of reputation from an incomplete information 

point of view, using the centipede game. We also introduce the signaling games and 

illustrate the separating, pooling, and partial-pooling equilibria. 

1 Reputation 

Consider a game in which a player i has two types, say A and B. Imagine that if the 

other players believe that i is of type A, then i’s equilibrium payoff will be much higher 

than his equilibrium payoff when the other players believe that he is of type B. If there’s 

a long future in the game and i is patient, then he will act as if he is of type A even 

when his type is B, in order to convince the other players that he is of type A. In 

other words, he will try to form a reputation for being of type A. This will change 

the equilibrium behavior dramatically when the other players assign positive probability 

to each type. For example, if a seller thinks that the buyer does not value the good 

that much, then he will be willing to sell the good at a low price. Then, even if the 

buyer values the good highly, he will pretend that he does not value the good that much 

and will not buy the object at higher prices–although he could have bought at those 

prices if it were common knowledge that he values the object highly. (If the players 

are sufficiently patient, then in equilibrium the price will be very low.) Likewise, in the 

entry deterrence game, if it is possible that the incumbent gains from a fight in case of 

an entry, if this is the incumbent’s private information, and if there is a long future in 

the game, then he will fight whenever the entrant enters, in order to form a reputation 

for being a fighter and deter the future entries. In that case, the entrants will avoid 
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entering even if they are confident that the incumbent is not a fighter. We will now 

illustrate this notion of reputation formation on the centipede game. 

Consider the centipede game in figure 1. In this game, a player prefers to exit (or 
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Figure 1: 

to go down) if he believes that the other player will exit at the next node. Moreover, 

player 2 prefers exiting at the last node. Therefore, the unique backward induction 

outcome in this game is that each player goes down at each node. In particular, player 

1 goes down at the first node and the game ends. This outcome is considered to be very 

counterintuitive, as the players forego very high payoffs. We will see that it is not robust 

to asymmetric information, in the sense that the outcome would change dramatically if 

there were a slight probability that a player is of a certain “irrational” type. In figure 

2, we consider such a case. Here, player 2 assigns probability .999 to the event that 

player 1 is a regular rational type, but she also assigns probability .001 to the event that 

player 1 is a “nice” irrational type who would not want to exit the game. We index 

the nodes by n starting from the end. Sequential rationality requires that player 1 goes 

across at each information set on the lower branch. Moreover at the last information 

set (n = 1), player 2 goes down with probability 1. These facts are indicated in figure 

3. We will now prove further facts. We need some notation. Let’s write µn for the 

probability player 2 assigns to the lower branch at information set n. Moreover, let pn 

be the probability that player 1 goes down at node n if he is rational. 

Facts about the perfect Bayesian Nash equilibrium 

1. For any n >  1, player 2 goes across with positive probability. Suppose that player 
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2 goes down with probability 1 at n >  1. Then, if rational, player 1 must go down 

with probability 1 at n + 1. Hence, we must have µn = 1. That is, player 2 is 

sure that player 1 is irrational and will go across until the end. She must then go 

across with probability 1 at n. 

2.	 Every information set of player 2 is reached. (This is because irrational player 1 

and player 2 go across with positive probability.) Hence, the beliefs are determined 

by the Bayes’ rule. 

3.	 For any n >  2, rational player 1 goes across with positive probability. Suppose 

that rational player 1 goes down with probability 1 at n >  2. Then, µn−1 = 1, 

and thus player 2 must go across with probability 1 at n − 1. Then, rational player 

1 must go across at n with probability 1. 

4. If player 2 strictly prefers to go across at n, then 

(a) 1 goes across with probability 1 at n+1, 

(b) 2 must strictly prefer to go across at n+2, 

(c) 2’s posterior at n is her prior. 

Parts a and b must be clear by now. Inductive application of parts a and b imply 

that players go across with probability 1 until n. Then, c follows from the Bayes’ 

rule. 

5.	 If rational player 1 goes across with probability 1 at n, then 2’s posterior at n − 1 

is her prior. (This follows from 4.c.) 

∗ ∗6. There exists n such that each player go across with probability 1 before n (i.e., 
∗when n > n  ∗), and rational player 1 and player 2 mix after n (i.e., when n < n  ∗). 

(This fallows from 1,3, and 4.) 

We will now compute the equilibrium. Firstly, note that player 2 mixes at n = 3  
∗(i.e., n > 3). [Otherwise, we would have µ3 = .001 by 4.c, when player 2 would go down 

with probability 1 at n = 3, contradicting Fact 1.] That is, she is indifferent between 

going across and going down at n = 3. Hence, 

100 = 101µ3 + 99 (1 − µ3) = 99 + 2µ3, 
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i.e., 

µ3 = 1/2. 

Now consider any odd n with 3 < n < n  ∗; player 2 moves at n. Write x for the payoff 

of player 2 at n (if she goes down). Since player 2 is indifferent being going across and 

going down, we have 

x = µn(x + 1) + (1 − µn)[(x − 1)pn−1 + (1 − pn−1)(x + 1)]. 

The left hand side of this equation is the payoff if she goes down. Let us look at the 

right hand side. If she goes across, with probability µn, player 1 is irrational and will 

go across at n − 1 with probability 1, reaching the information set at n − 2. Since 

player 2 is indifferent between going down and going across at the information set n − 2, 

the expected payoff from reaching this information set for player 2 is x + 1. This gives 

the first term. With probability 1 − µn, he is rational and will go down at n − 1 with 

probability pn−1, yielding payoff x − 1 for player 2, and will go across with probability 

1 − pn−1, reaching the information set at n − 2, which yields x + 1  for player 2. This 

gives the second term. After some algebraic manipulations, this equation simplifies to 

(1 − µn)pn−1 = 1/2. (1) 

But, by the Bayes’ rule, we have 

µn µn−2 = 
µn + (1 − µn) (1 − pn−1) 

µn µn = = 
µn + 1  − µn − (1 − µn) pn−1 1 − (1 − µn) pn−1 

= 2µn, (2) 

where the last equality is due to (1). Therefore, 

µn−2 µn = . 
2 

By applying the last equality iteratively, we obtain 

µ3 = 1/2 

µ5 = µ3/2 = 1/4 

µ7 = µ5/2 = 1/8 
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µ9	 = 

=µ11 

=µ13 

=µ15 

=µ17 

=µ19 

=µ21 

µ7/2 = 1/16 

µ9/2 = 1/32 

µ11/2 = 1/64 

µ13/2 = 1/128 

µ15/2 = 1/256 

µ17/2 = 1/512 

µ19/2 = 1/1024 < .001. 

∗ ∗Therefore, n = 20. At any even n < n  , player 1 goes across with probability 

1 
pn = 

2(1 − µn+1) 
, 

and at n − 1 player 2 mixes so that player 1 is indifferent between going across and going 

down. If we write qn−1 for the probability that 2 goes down at n − 1 and y for the payoff 

of rational 1 at n, then we have 

y = qn−1 (y − 1) + (1 − qn−1) (y + 1) = y + 1  − 2qn−1, 

i.e., 

qn−1 = 1/2. 

At n ∗ +1  = 21, µn ∗+1 = .001, and at n ∗ − 1 =  19, µn ∗−1 = 1/512. Hence, by Bayes’ rule, 

µn ∗+1 .001 
1/512 = µn ∗−1 = ³ ´ = , 

1 − 1 − µn ∗+1 pn ∗ 1 − .999pn ∗ 

yielding 
1 − .512 ∼pn ∗ = = .488. 
.999 

∗At any n > n  , each player goes across with probability 1. 

2 Signaling Games 

In a signaling game, there are two players: Sender (denoted by S) and Receiver (denoted 

by R). First, Nature selects a type ti from a type space T = {t1, . . . , tI } with probability 

p(ti). Sender observes ti, and then chooses a message mj from a message space M = 
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{m1, . . . ,mJ } to be sent to the receiver. Receiver observes mj (but not ti), and then 

chooses an action ak from an action space A = {a1, . . . , aK }. The payoffs for the Sender 
and the Receiver are US (ti,mj , ak) and UR(ti,mj , ak ), respectively. A good example for 

a signaling game is the Beer-Quiche game (depicted in figure 4). 
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Figure 4: 

In this game, Sender is player 1; Receiver is player 2. Type space is T = {ts, tw}, 
messages are beer and quiche (i.e., M = {beer, quiche}), and the actions are “duel” 

and “don’t”. In this game there were two equilibrium outcome, either both types have 

beer or both types have quiche. (The former equilibrium is depicted in figure 5.) 

0 1 
1 1 

beer 

beer 

quiche 

quiche 

duel 

don’t 

du
el 

don’t 

don’t 

duel 

don’t 

duel 

0 
0 

1 
0 

tw 

ts 

{.1} 

{.9}.9 

.1 1 

0 

11 
beer 

beer 

quiche 

quiche 

duel 

don’t 

du
el 

don’t 

don’t 

duel 

don’t 

duel 

0 
0 

1 
0 

tw 

ts 

{.1} 

{.9}.9 

.1 1 

0 

2

0


3 
0 

2 
1 

3

1


Figure 5:


Such equilibria are called pooling equilibrium, because the types are all send the same
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message, and thus no information is conveyed to the receiver; the receiver’s posterior 

beliefs on the path of equilibrium is the same as his priors. Formally, 

Definition 1 A pooling equilibrium is an equilibrium in which all types of sender send 

the same message. 

Another type of perfect Bayesian Nash equilibrium is separating equilibrium: 

Definition 2 A separating equilibrium is an equilibrium in which all types of sender 

send different messages. 

Since each type sends a different message on the path of a separating equilibrium 

receiver learns the sender’s type (the truth). Such an equilibrium is depicted in Figure 

6. Notice that player 2 assigns probability 1 to the strong type after beer and to the 

weak type after quiche. 

Most equilibria in many games will be partially pooling and partially separating: 

Definition 3 A partially separating/pooling equilibrium is an equilibrium in which some 

types of sender send the same message, while some others sends some other messages. 

Such an equilibrium is depicted in figure 7 for a beer-quiche game in which player 1 

is very likely to be weak. In this equilibrium, strong player 1 orders beer, while the weak 
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Figure 7: 

type mixes between beer and quiche so that after beer, player 2 finds the types equally 

likely, making him indifferent between the duel and not duel. After beer, player 2 mixes 

between duel and not duel with equal probabilities so that the weak type of player 1 

is indifferent between beer and quiche, allowing him to mix. Note that the beliefs are 

derived via the Bayes’ rule. Note also that, after quiche, player 2 knows that player 1 is 

weak, while he is not sure about player 1’s type after beer – although he updates his 

belief and find player 1 more likely to be strong. 
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