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CHAPTER 1 SETS AND MAPPINGS

1. Convex Set
S < R" is a convex set if for all x2 € S, we have

X1+ (1 - tx2 e S

for all t € [0, 1].
Convex set: the Intersection of Convex Sets is Convex

2.0pen and Closed ¢ —Balls
Open ¢ —Ball with center x° and radius ¢ > 0 is the subset of points in
RN,
B:(x9) = {x € R"d(x%x) < &}

Closed ¢ —Ball with center x° and radius ¢ > 0 is the subset of points in
RN,
B:(x%) = {x € R"d(xX%,x) < &}

Open set: S < R" is an open set if, for all x € S, there exists some

e> 0 such that B.(x) < S.

Close set: S is closed set if its complements S¢ is an open set.

Open sets:

The empty set, @,is an open set.

The entire space, R", is an open set.

The union of open sets is an open set.

The intersection of any finite number of open sets is an open set.

Every Open Set is a Colletion of Open Balls:
Let S be an open set. For every x € S, choose some ¢x > 0 such that
B.,(X) < S. Then,

S = Uxes Bsx(x)-

Closed Sets:

The empty set, @, is a closed set.

The entire space, R", is a closed set.

The union of any finite collection of closed sets is a closed set.
The intersection of closed sets is a close set.

3.Separating Hyperplanes
Given p € R"with p # 0, and ¢ € R, the hyperplane generated by p



and cis set Hye = {z € R"p.z = c}. The sets {z € R"p .z > ¢} and
{z € R"p -z < c} are called, respectively, the half-space above and the
half-space below the hyperplane Hy.

Separating Hyperplane Theorem:

Suppose that B < R" is convex and closed, and that x ¢ B. Then there
isp € R"withp # 0, and a value ¢ € R such that p - x > ¢ and
p-y < cforeveryy € B.

More generally, suppose that the convex sets A,B < R" are disjoint (i.e.,
AN B = @). Then there is p € R" with p # 0, and a value ¢ € R, such
that p - x > c forevery x e Aandp -y < c for everyy € B. That is,

there is a hyperplane that separates A and B, leaving A and B on different
sides of it.

Supporting Hyperplane Theorem:

Suppose that B < R" is convex and that x is not an element of the
interior of set B (i.e., x ¢Int B). Then there is p € R" with p # 0 such that
p.x>p-yforeveryy e B.

4 Bounded sets
Bounded sets: S is bounded if there exists some ¢ > 0 such that

S < B.(x) for some x € R"

Lower bound: any real number | for which I < x for all x € S is called
a lower bound for S.

Upper bound: any real number u for which x < u for all x € S is called
an upper bound for S.

S < R is bounded from below if it has a lover bound, and is bounded
from above if it has an upper bound.

The largest number among the lower bounds is called the greatest lower
bound (g.l.b.) of S.

The smallest number among the upper bounds is called the least upper
bound (I.u.b.) of S.

Upper and Lower Bounds in Subsets of Real Numbers:

1. Let S be a bounded open set in R and let a be the g.1.b. of S and b
be the l.u.b.of S. Thena ¢ Sandb ¢ S.

2. Let S be a bounded closed set in R and let a be the g.l.b. of S and
Sand b be the l.u.b. of S. Thena € Sand b € S.

(Heine-Borel) Compact sets: a set S in R" is called compact if it is closed
and bounded.



5. (Cauchy) Continuity

Let D be a subset of R", and let f : D - R". The function f is
continuous at the point xX° € D if for every ¢ > 0, there is a § > 0 such
that

f(Bs(x°) N D) < B.(f(x?%)).

If f is continuous at every point x € D, then it is called a continuous
function.

Open sets in D : Let D be a subset of R". Then a subset S of D is
open in D if for every x € S there is an ¢ > 0 such that B.(x) N D < S.

Closed sets in D : Let D be a subset of R™. A subset S of D is closed
in D if its complement in D is open in D.

Continuity and Inverse Images:

Let D be a subset of R™. The following conditions are equivalent:
1. f : D - R" is continuous.

2. For every open ball B in R", f1(B) is open in D.

3. For every open set S in R", f1(S) is open in D.

Theorem  The Continuous Image of a Compact Set is a Compact Set
Let D be a subset of R™ and let f : D — R" be continuous function. If
S < D is compact in D, then its image f(S) < R" is compact in R".

6. Sequence

Sequences in R" : A sequence of R" is function mapping some infinite
subset | of positive integers into R". We shall denote a sequence by {x}i,
where xk e Rn for every k € |

Convergent sequences: The sequence {xk}, converges to x € R" if for

every ¢ > 0, there is a k such that xk € B.(x) for all k € | exceeding k.
Bounded sequences: A sequence {x<}in R" is bounded if for some
M e R,|xK|I< M for all k € I.
Subsequences: {xkK}«iis a subsequence of the sequence <{X}iin R", if J
is an infinite subset of I.

Bounded sequences:
Every bounded sequence in R" has a convergent subsequence.



Sequence, Sets, and Continuous Functions:

Let D be subset of R", and let f : D - R™ Then

1. D is open if and only if for each x € D, if {xK}}2, converges to x, then
for some k, xk € D for all k > k.

2. D is closed if and only if for every {xk}¢, of points in D converging to
some x € R it is also the case that x € D.

3. f is continuous if and only if whenever {x}¥, in D converges to
x € D, {f(x¥)}r, converges to f(x).

7. Some Existing Theorems

(Weierstrass) Existence of Extreme Values:

Let f : S > R be a continuous real-valued mapping where S is a
nonempty compact subset of R". Then these exists a vector x* € S such
that

f(X) < f(x) < f(x*) for all x € S.

The Brouwer Fixed-Point Theorem:

Let S < R" be a nonempty compact and convex set. Let f : S - S be
continuous mapping. Then there exists at least one fixed point of f in S. That
is, thers exists at least one x* € S such that x* = f(x*).

8. Real-Valued Functions
Real-valued function: f : D - R is a real-valued function fi D is any set
and R < R.

Increasing, Strictly Increasing and Strongly Increasing Functions:

Letf : D - R, where D is subset of R".

f is increasing if f(x°) > f(x!) whenever x° > xi.

f is strictly increasing if f(x°) > f(x!) whenever x° >> x1.

f is strongly increasing if f(x°) > f(x!) whenever x° = x! and x° > xi.

Decreasing, Strictly Decreasing and Strongly Decreasing Functions:

Letf : D - R, where D is subset of R".

f is decreasing if f(x°) < f(x!) whenever x® > xi.

f is strictly decreasing if f(x°) < f(x!) whenever x° >> xi,

f is strongly decreasing if f(x°) < f(x!) whenever x° + x! and x° > xI.

9.Related sets
Level sets: L(y?) is a level set of the real-valued function f : D - R iff
L(y9) = {xx € D,f(x) = y°%, where y° € R < R.



Level sets relative to a point: £(x%) is a level set relative to x° if
L(x% = {xx € D,f(x) = f(x9)}.

Superior set: S(y%) = {xjx € D,f(x) > y% is called the superior set for
level yo.

Inferior set: 1(y°) = {xjx € D,f(x) < y° is called the inferior set for level
y°.

Strictly superior set: S'(y°) = {xx € D, f(x)) > y% is called the strictly
superior set for level y°.

Strictly inferior set: I'(y%) = {x|x € D,f(x) < y° is called the strictly
inferior set for level y°.

Superior, Inferior, and Level Sets:
Forany f : D - Rand y° € R :
LY?) < S(9).
LY?) < 1(y9).
Ly®) = S°) N 1(y°).
S'(y9) <= S(y°).
I'(y%) N LY°) = @
S'(y%) N L) = .
'y N LY°) = 0.
8.5y NnI'y%) = 0.

Nooahs~wbdPRE

10. Concave Functions

Assumption:

(1) D < R" is a convex set.

(2) When x! € Dand x2 € D, xt = tx! + (1 - t)x2, fort e [0,1],
denote the convex combination of x! and x2.

Concave function: f : D - R is a concave function if for all x1,x2 € D,
f(xt) > tf(x}) + (1 - Hf(x?) Vvt e [0,1]

Theorem  Points on and below the graph of a concave function is
always form a convex set
Let A = {(X,y)[x € D,f(x) > y} be the set of points "on and below"

the graph of f : D - R, where D < R, Then,

f is a concave function < A is a convex set.

Strictly concave function: f : D - R is a strictly concave function iff, for
all xI = x? in D,

f(xt) > tf(x!) + (1 - Hf(x2) for all t € (0,1)



Quasiconcave function: f : D - R is quasiconcave iff, for all x and x?
in D,
f(x) > min[f(x!), f(x?)] for all t € [0, 1]
Quasiconcavity and the superior sets

f : D - R is a quasiconcave function iff S(y) is a convex set for all
y € R.

Strictly quasiconcave function: A function f : D - R is strictly
guasiconcave iff, for all x! + x2 in D, f(x!) > min[f(x1), f(x?)] for all
t € (0,1).

Concavity implies quasiconcavity:
A concave function is always quasiconcave.
A strictly concave functions is always strictly quasiconcave.

11. Convex and quasiconvex functions
Convex function: f : D - R is a convex function iff, for all x,x2 in D,

f(xt) < tf(xt) + (1 — pf(x?) for all t € [0, 1].
Strictly convex function: f : D - R is a strictly convex function iff, for all
x! = x2 in D,
f(xt) < tfxt) + (1 — Hf(x?) for all t € (0, 1).

Concave and convex functions:
f(x) is a (strictly) concave function < —f(x) is a (strictly) convex function.

Points on and above the graph of a convex function always form a
convex set:
Let Ax = {(x,y)[x € D,f(x) < y} be the set of points "on and above"

the graph of f : D - R, where D < R" is a convex set and R < R.
Then

f is a convex function < A* is a convex set.

Quasiconvex function: f : D - R is
guasiconvex< VxI, x2 e D, f(x!) < max[f(x!, f(x2)]

Strictly quasiconvex function: f : D — R is strictly
guasiconvex< Vx!,x2 e D, f(x) < max[f(x1), f(x?)]



Quasiconvexity and the inferior sets:
f : D - R is quasiconvex function< I(y) is a convex set for all y € R.

Quasiconcave and quasiconvex functions:
f(x) is a (strictly) quasiconcave function < —f(x) is a (strictly) quasiconvex
function.

Remark

f is concave < the set of points beneath the graph is convex
f is convex < the set of points above the graph is convex

f quasiconcave < superior sets are convex sets

f quasiconvex <inferior sets are convex sets

f concave = f quasiconcave

f convex = f quasiconvex

f (strictly) concave < —f (strictly) convex

f (strictly) quasiconcave < —f (strictly) quasiconvex



CHAPTER 2 CALCULUS

Functions of a Single Variable
Chain Rule: - [f(g0)] = (9(x)g'(x)

Concavity and first and second derivatives:

Let D be a nondegenerate interval of real numbers on which f is twice
continuously differentiable. The following statements 1 to 3 are equivalent:

1. f is concave.

2. f'"(x) < 0vx € D

3. VX € D : f(x)

Moreover,

4. f'"(x) < 0 vx € D = fis strictly concave.

| f(x%) + f'(x%)(x — x% vx € D.

IA

Functions of Several Variables
Directional derivative:

vx,z € Rgt) = f(x + 2) = ¢'(0) = ) fixz
i=1

The term on the right-hand side is known as the directional derivative of f
at x in the direction z.

Gradient: Vf(x) = (fi(x), ..., fan(x)) is called the gradient of f at x.
Remark g'(0) = Vi(X)z.

Second-order partial derivative:

0 ofx) | _ 0HX)  _ o
x o ) = ke - WO
Second-order gradient vector: the gradient of the partial with respect to

X1, fl(X).

0?f(x) 0?f(x)
OX10X1 T OXnOX1

Vii(x) = ( (f12(%), ..., f1n (X))

Hessian matrix:

f11(X) f12(X) fln(X)

HX) — f21FX) f22'(X) onFx)

far(X) fra(X) ... fan(X)



Young's Theorem:
For any twice continuously differentiable function f(x),
0’f(x)  0H(x)

OXiOX;j B OXjOXi vi and J.

Single-Variable and Multivariable Concavity:

f is a real-value function defined on the convex subset D of R". f is
(strictly) concave < Vx € D, Vnonzero z € R" g(t) = f(x + tz) is (strictly)
concave on {t € Rx + tz € D}

Negative semidefinite matrix:

A is negative semidefinite & Vvz € R" zTAz < 0.
A is negative definite < Vvz € R" zTAz < 0.

A is positive semidefinite & VvVz € R",zTAz > 0.
A is positive definite < vz € R" zTAz > 0.

Slope,curvature, and concavity in many variables

Let D be a convex subset of R" with a nonempty interior on which f is
twice continuously differentiable. The following statements 1 to 3 are
equivalent:

1. f is concave.

2. H(x) is negative semidefinite for all x in D.

3. For VX € D : f(x) < f(x% + VI(x%)(x — x% Vvx € D.

Moreover,

4. If H(x) is negative definite for all x in D, then f is strictly concave.

Concavity, convexity, and second-order own partial derivatives
Let f : D - R be a twice diffentiable function.

1. f is concave = VX fii(x) < 0,i = 1,...,n.

2. fis convex = Vx, fi(x) > 0,i = 1,...,n.

Homogeneous Functions

Homogeneous function: A real-valued function f(x) is homogeneous of
degree k < f(tx) = tkf(x), vt > 0.

f(x) is homogeneous of degree 1, or linear
homogeneous< f(tx) = tf(x), vt > 0.

f(x) is homogeneous of degree zero= f(tx) = f(x), vt > 0.



Partial derivatives of homogeneous functions
If f(x) is homogeneous of degree k, its partial deriatives are homogeneous
of degree k — 1.

Euler's theorem (or adding-up theorem)

f(x) is homogeneous of degree k < Wvx kf(x) = 3" J®

i1 Tax X

Some Useful Results in Calculus (BS)

Implicit function theorem
Taylor’'s theorem



CHAPTER 3 STATIC OPTIMIZATION

Unconstrained Optimization

Necessary conditions for local interior optima in the single-variable case
Let f(x) be a twice continuously differentiable function of one variable.
Then f(x) reaches a local interior
1. maximum at x* = f(x*) = 0 (FONC),
= f'(x*) < 0 (SONC).
2. minimum at X = f(X) = 0 (FONC)
= f'(X) > 0 (SONC).

FONC for local interior optima of real-valued functions:
f(x) reaches a local interior maximum or minimum at x* = Vf(x*) = 0

SONC for local interior optima of real-valued functions:
Let f(x) be a twice continuously differentiable.

f(x) reaches a local interior maximum at x* = H(x*) is negative semidefinite

f(x) reaches a local interior maximum at X = H(X) is positive semidefinite

Sufficient condition for negative and positive definiteness of the Hessian:

Let f(x) be twice continuously differentiable, and let Di(x) be the ith-order
principal minor of the Hessian matrix H(x).

1. (-)Di(x) > 0,i = 1,...,n = H(x) is negative definite.

2. Dix) > 0,i = 1,...,n = H(x) is positive definite.

If condition 1 holds for all x in the domain, then f is strictly concave.

If condition 2 holds for all x in the domain, then f is strictly convex.

Sufficient conditions for local interior optima of real-valued functions
Let f(x) be twice continuously differentiable.

1. fix*) = 0 and (-1)"Di(x*) > 0,i = 1,...,n = f(x) reaches a local
maximum at x*.
2. i) = 0 and Di(x*) > 0,i = 1,...,n = f(x) reaches a local

minimum at X.

(Unconstrained) local-global theorem:
Let f be a twice continuously differentiable real-valued concave function on

D. The following statements are equivalent, where x* is an interior point of
D :
1. Vi(x*) = 0.



2. f achieves a local maximum at x*.
3. f achieves a global maximum at x*.

Stict concavity/convexity and the uniqueness of global optima:

1. x* maximizes the strictly concave function f = x* is the unique global
maximizer, i.e., f(x*) > f(x) Vx € D,x # x*.

2. X minimizes the strictly convex function f = X is the unique global
minimizer, i.e., f(X) < f(x) vx € D,x = X.

Sufficient condition for unique global optima:
Let f(x) be twice continuously differentiable.

1. f(x) is strictly concave and fi(x*) = 0,i = 1,...,n = x* is the unique
global maximizer of f(x).
2. f(x) is strictly convex and fi(X) = 0,i = 1,...,n = X is the unique

global maximizer of f(x).
Constrained Optimization

Equality constraints

Two-variable, one constraint optimization problem:

max f(x1, X2) s.t. g(xa, x2) = 0

1,42

Lagrange’s method

1.Lagarangian function:
L(X1, X2, A) = f(X1,X2) + Ag(X1, X2)

2.F.0.C
ox _  of(xi, x3) . 09(xi, X3)
OX1 B 0X1 A OX1 =0
oL _  Of(xi, x3) . 0g(X1, x3)
OX> B OX2 + A OX> =0
oL

s - 9kxixz) = 0.

The first-order partials fo the Lagrangian function with respect to the x;
were

Li = fi + Agi.
The second-order partials of £ would then be



L11 = fu + Agu

L1 = 2 + 2912

L = f2 + A02.

Bordered Hessian of the Lagrangian function
0 91 02

H = g1 L1 L2

g2 Lo L2

Sufficient condition for a local optimum:

D = |H> 0(< 0) = (x{,x3) is a local maximum (minimum)

n-variable, m-constraint optimization problem:

Lagrange’s theorem:

Let f(x) and gi(x),j = 1,...,m, be continuously differentiable real-valued
functions over some domain D < R". Let x* be an interior point of D and
suppose that x* is an optimum of f subject to the constraints, gi(x*) = 0. If
Vgi(x*) are linearly independent, then there exist m unique numbers 1, such
that

OLOCAT) _ DM0C) | gL 0900) g
=1

OXi B OXi OXi

Bordered Hessian matrix

I
I
o
o
=3
«
=3

\ d% g.w ;e.nl geinn Y,

Sufficient conditions for local optima with equality constraints:

Let the objective function be f(x) and the m < n constraints be
gx) = 0,j = 1,....,m.

1. x* is a local maximum of f(x) s.t. the constraints if the n — m principal
minors in D = |H| alternate in sign beginning with positive



Dmi > 0,Dm2z < 0,..., when evaluated at (x*, A* ).
2. x* is a local minimum of f(x) s.t. the constraints if the n — m principal
minors in D = |H| are all negative Dmia < 0,Dmi2 < 0,..., when evaluated

at (xx, A* ).

Necessary conditions for optima of real-valued functions subject to
nonnegativity constraints

Let f(x) be continuously differentiable.

1. If x* maximizes f(x) subject to x > 0, then x* satisfies

of(x*)

I. o < 0,1 =1,..n

Lo Of(X) o 6

Il. X'[—axi ] =01 =1 ..n

ii. xf > 0,i = 1,...,n.

2. If x* minimizes f(x) subject to x > 0, then x* satisfies
LS M R
OXi

Lol Of(x*) o -

Il. X'[—axi ] =01 =1 ..n

ii. xf > 0,i = 1,...,n.

Inequality constraints

A two-variable nonlinear programming programming
max f(x1, X2)
s.t.g(x1,x2) > 0.
Equivalent to the three-variable problem with equality and nonnegativity
constraints:
mnax f(X1, X2)
s.t.g(x1,x2) —z =0
z > 0.
Lagrangian function:
L(X1, X2,2, 1)
Kuhn-Tucker conditions:

f(x1, X2) + A[g(X1, X2) — Z]

L1 = f1 + lgl =0

L fo+ 202 = 0
AQ(X1,X2) = 0

A= 0,9(X,x2) = 0



(Kuhn-Tucker) Necessary conditions for optima of real-valued functions
subject to inequality constraints

Let f(x) and gi(x),j = 1,...,m, be continuously diffentiable real-valued
functions over some domain D < R". Let x* be an interior point of D and
suppose that x* is an optimum of f subject to the constraints,

g(x*) > 0,j = 1,...,m.

If Vgi(x*) associated with all binding constraints are linearly independent,
then there exists a unique vector A*such that (x*, A* ) satisfies the
Kuhn-Tucker conditions:

QLA ) Afx) N, 9gIX) -
=ohl = L +J_Zl/1jgaT - 0,i = 1,..,n
Agix*) = 0gi(x*) > 0j =1,...,m

Furthermore, the vector A* is nonnegative if x* is a maximum, and
nonpostitive if it is a minimum.

Value Functions

Envelop Theorem:
Consider the optimization problem (P1):

max f(x, a)

s.t. gix,a) = 0
X > 0.
suppose the objective function and constraint are continuously
differentiable in a, let x(a) >> 0 uniquely solve P1 and assume that it is also
continuously differentiable in the parameters a. Let £(x, a, 1) be the problem’s
associated Lagrangian function and let (x(a), A(a)) solve the Kuhn-Tucker

conditions. Finally, let M(a) be the problem’s associated maximum-value
function. Then,

oM(a) oL, :
= ] =1 ...,m
04 04 X(@),A(@)
where the right-hand side denotes the partial derivative of the Lagrangian

function with respect to the parameter a; evaluated at the point (x(a), A(a)).




CHAPTER 4 Differential Equations
INTRODUCTION

A differential equation is an equation that involves derivatives of variables.

If there is only one independent variablce, then it is called an ordinary
differential equation (ODE).

If the highest derivative is an ODE is of order n, then it is an nth-order
ODE.

When the functional form of the equation is linear, then it is a linear ODE.

Example: A first-order linear ODE

ar - y(t) + a - y) + x(t) = 0

dy(t)
dt

x(t) : forcing function

If x(t) = as, then the equation is called autonomous.
If x(t) 0, then the equation is called homogeneous.

where y(t) =

Solution methods

1.Graphical
e Used for nonlinear, as well as linear, differential equations;

e Used only for autonomous equations.

2.Analytical
e Used only with a limited set of functional forms.

3.Numerical analysis
e e.g. Matlab has the subroutines ODE23 and ODEA45, and
Mathematica has the command NDSOLVE.

First-order ODE

Graphical solutions

° 1. Consider an automoumous ODE of the form,
y® = fly@®]
e Example 1
yO = fiy®] = a-y® - x
Case 1, a > O



FIGURE A.1a
Linear ODE. If the coefficient a in Eq. (A.6) is positive, then the differential equation for y is unstable.

e Case 2,a < 0

FIGURE A.1b
Linear ODE. If the coefficient a in Eq. (A.6) is negative, then the differential equation for y is stable.

o - Example 2
y© = fly®] = s-[y®]* -6 - y®
5,0,a > 0:a < 1
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FIGURE A.l1c

Nonlinear ODE. In Eq. (A.7), the slope of f(+) with respect to y is initially positive and is subsequently
negative. The steady state at 0 is unstable, whereas that at y* is stable.

Definition: Stability
o - f 2—§ . >0 then vy is locally unstable,
If %| < 0,then y is locally stable.
y*

Analytical Solutions
e The solution to y(t) = a is obviously y(t) = b + at, where b is
an arbitrary constant.



e Equations that involve polynomial functions of time
y(t) = ap + ait + az - t2 +...+a, - t"
has the solution

y®) = b + aot + a; - (%)+...+an-( t

n+1

)

e The general solution for linear, first-order ODEs
Linear, first-order differential equations with constant
coefficients.

y +a -yt +x(t) = 0
1) = y® +a-y® = —x(®
2 = j edl[y(t) + a - y(Oldt = — j eal . x(t)dt
The term ea is called the integrating factor. The reason for
multiplying by the integrating factor is that the term inside the
left-hand side integral becomes the deriative of e . y(t) with respect
to time:
et - YO +a - y®] = -S-[e* - y(® + bo]
° - Hence, the term on the left-hand side of EQ.(2)
equals e? . y(t) + bo.
(3) Compute the integral on the right-hand side of Eq.(2).
Call the result INT(t) + b;
(4) Mutiply both sides by e to get y(t)
y(t) = —e=a « INT(t) + be™
where b = by — bp is an arbitrary constant.
Problem Sets
e Ex.1 Show the general solution to y(t) — y(t) -1 = 0
[Answer: y(t) = -1 + be]
e EXx.2 Suppose k(t) = A[k(t) — k*] and k(0) is the initial value of
k(t), show that k(t) = k* + e*[k(0) — k*]. (Romer, 2001, p.24)
Linear, first-order differential equations with variable coefficients.

y(t) + a(t) - y(t) + x(t) = 0

t
. . . 7)dr .
e The integrating factor is now ejo 2 , SO that the left-hand side

t
. . 7)dr
becomes the derivative of y(t) - eI o MO

e We find that the solution to the ODE is

t t .
y(t) = _e_.[o a(r)dr . Iejo a(r)dr CX() - dt + b - e—jo a(r)dr’

Where b is an arbitrary constant of integration.

Systems of Linear ODE

A system of linear, first-order ODEs of the form



yi(t) = ann « yi(t) + ..4am -« ya(t) + xi(t),

yn(t) - an]_y]_(t) +. .. +annyn(t) + Xn(t).
In matrix notation, the system is

yO = A - y@® + x(),

y1(t)
Where y(t)
yn()
yi(t)
y(t) =
yn(t)

A is an n x n square matrix of constant coefficients
X(t) is a vector of n functions.
Solutions Methods
e Phase diagram
e Analytical
e Numerical
Phase Diagram
e Diagonal systems: A simple case

yi(t) = an - yi(b),
y2(t) = az - ya(b),
° where a;; and a; are real numbers.
Case 1, a;3 > 0 and a» > 0 : An unstable system
° - Step One
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FIGURE A.da
The j; = 0 locus. The figure shows the y; = 0 schedule (the vertical axis in this exnmple) for the
system in Eq. (A.20) when a;; > 0. The arrows show the direction of motion: for y;. °

e Step Two
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The 7, = 0 locus. The figure shows the y, = 0 schedule (the horizontal axis in this example) for the
system in Eq. (A.20) when az > 0. The arrows show the direction of motion for y.
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e Step Three
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FIGURE A.4c

The phase diagram in an unstable case. The results from Figs. A.4a and A.4b are joined to generate a
simple phase diagram. The arrows show the directions of motion for y, and y, whena;, > Oanday, > 0.
This system is unstable.

e Step Four, use the boundary conditions to see which one of the
many paths depicted in the picture constitutes the exact solution.

Case 2, a;3 < 0 and axn < 0 : A stable system

NS

/ Steady state

FIGURE A.5

The phase diagram in a stable case. In this exami:le, ay; < 0and ax; < 0 apply in Eq. (A.20). This
system is stable. )

»

Case 3, a;1 < 0 and az > 0 : A saddle-path stability.
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FIGURE A.6
The phase diagram in a case of saddle-path
Eq. (A.20). This system is saddle-path stable.
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stability. In this example, a;; < 0 and a» > 0 apply in
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A nondiagonal example [see BS, p.476))\

N

® ¥,=0 m
Stable arm
\_ —/ »n=0
y3=2 \
“A o ) \ Unstable arm
a0 = L1 [ : @
: n
»n©0) »=10

FIGURE A.7a
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diagram for the system in Eq. (A.21). This system is saddle-path stable.



CHAPTER 5 Dynamic Optimization

Dynamic Control

Typical Problem

max V(0) = jT vIk(D), c(t), tldt
c(t) 0

s.t. k@) = gk(t), c(t), 1] 1)
k() = ko > 0 2)
k(T) -« e™T > 0 (3)

where V(0) —objective function as seen from the initial moment;
r(t) —average discount rate
T —terminal planning date, finite or infinite
k(t) —state variable
c(t) —control variable
v(e) —instantaneous felicity functions
Eq.(1): transition equation or equation of motion
Eq.(2): the initial condition
Eq.(3): the final constraint

For finite values of T, this constraint implies k(T) > 0, as
long as the discount rate r(T) is positive and finite. If k(t)
represents a person’s net assets and T is the person’s
lifetime, then the constraint in Eqg.(3) precludes dying in debt.

If the planning horizon is infinite, then the condition says that
net assets can be negative and grow forever in magnitude, as
long as the rate of growth is less than r(t). This constraint
rules out chain letters or Ponzi schemes for debt.

Example
v(k,c,t) = e « u[c(t)]
k = glke),c(t),t] = fk(t),t] — ct) — & - k(t)

Procedure to Find the First-Order Conditions

1. Hamiltonian function:

H = v(kct) + u() - gk, c,t).
2. Take the derivative of the Hamiltonian with respect to the control
variable and set it to O:

oH _ v .99 _

oc oc A oc 0.

3. Take the derivative of the Hamiltonian with respect to the state



variable and set it to equal the negative of the derivative of the
multiplier with respect to time:

oH _ ov .99 _
ok = ek THT Ak H
4. Step four (transversality condition):

e Case 1: Finite horizons. Set the product of the shadow price and
the capital stock at the end of the planning horizon to O:

u(T) - k(™) = 0
e Case 2: Infinite horizons with discounting.
lim[u(t) - k®] = 0.
e Case 3: Infinite horizons without discounting. In this case, we use
Michel's condition,
imH®] = 0

Present-Value and Current-Value Hamiltonians

e Most of the models that we deal with have an objective function
of the form,

T T
j VK@, e, 1] - dt = j et ulk@, co] - dt

e Constructiong the Hamiltonian
H = e»r .ukc) +u - glkc,t).
The shadow price u(t) represents the value of the capital stock
at time t in units of time-zero utils.
e Rewrite the Hamiltonian as
H = e - [ukc)+ a®) - gk c, )],

where q(t) u(t) - ert. The variable q(t) is the current-value

shadow price.

e Define Ié|= H . ert to be the current-value Hamiltonian:
A= utk o) + q@®) - gk ¢ b).
e The first-order conditions can be expressed as
@) He =0,
(5) Hi= pq - ¢
e The transversality condition can be expressed as
q(T) - erT « k(T) = 0.

Multiple Variables
e A general dynamic problem:



;
L max jo ulke(®), . . ., km(D): C1(0), . . ., Cn(D); ] - dit

s.t.ki(t) = gike(D), ..., km(1); C(D), ..., Ca(D); 1]
ko(t) = g2[ki(t), ..., km(1);ca(d), ..., cn(t): 1]

Km(t)

= g"[ki(t), ..., km(2); ca(t), ..., Cn(t); t]
ki(0) > 0,...,km(0) > 0O, given
ki(T) > 0,...,kn(T) > 0, free

e The Hamiltonian is

H = ulki(t),..., km(t);ci(t),...,c(t); t] + zm: pi + 9.
e FONC )
agil?t) = 0,i = 1,...,n,
agil?t) = —i i o= 1,...,m,

The transversality conditions are

wi® « k(M) = 0,i = 1,...,m.

Dynamic Programming: An Introduction

Example: An optimal growth problem

max u@) = Z Bru(cy)
Kt 0

s.t.Ct + kt+1 = f(kt)

Where u(t) —instantaneos utility, which is an increasing, concave
function of current consumption

Bt —individual’'s subjective discount factor, i € (0, 1)
Ct —current consumption

ki1 —capital to be carried over to the following period
Ct + kt+1 = f(kt)

where c¢; — current consumption

ki1 — capital to be carried over to the following period

Value function

e The value function represents the fact that the maximum present



discounted value of the objective function from a point in time
onward can be expressed as a function of the state variables at
that date.

e Since the state variables at a point in time fully determine all
other variables both currently and (via the transition equations) at all
future dates, including those which enter the objective function, they
determine the maximum attainable value of the objective function.

e Example:

> b ke

v v \
G Ga

u (Ct) u(c,,) T

The state variable ki determines ki1, which determines Ki.o,
et cetera.

ki therefore determines the utility-maximizing value of

Ct, Ct+1, Cii2, €1 cetera, and this maximum attainable value is
simply V(k).

Therefore

V(kg = maxU) = 3 pu(co)
Kt =0

Bellman equation

1. In any period t, where the planner begins with ki, the choice
between c: and ky1 can be represented as maximizing

U(Ct) + ﬁV(kt+1)

2. Combining two observations, we have
Vk) = maxu(ftk) — ku1) + pV(kea)} (€q.4)

This is the Bellman equation, whose solution is a function V(.).

What lies behind the Bellman equation?

1. The value function allows a nontrivial dynamic problem to be
turned into a simple-looking single-period optimization.

2. Dynamic problems are two-period problems balancing "today"
against "the infinite future", but this works only when there is
consistency between how one treated the future yesterday and how
one treats it today.

Methods of solution



1. Method of conjecture.

2. Method of successive approximations.

The most useful method via the Bellman equation is not to solve for the
value function V(.) at all, but to derive the optimal path without finding V(-)
itself. Differentiability of V(:) allows us to do this in many cases.

With smooth functions and interior solutions, marginal changes in the state
variable k imply marginal changes in attainable welfare in the same direction.

With differentiability of V(-), the maximum problem in (eq.4) yields the
following first-order condition for ki

u'(fke) — ki) = BV'(kw1)  (eq.5)
Straightforward interpretation: choose ki1 so that the loss in utility from

"one less unit" of consumption today is just equal to the (discounted) gain in
future "one more unit" of capital carried over (i.e. "saving") would allow.

What is the utility gain from higher ki.1?
This can be calculated by use of the envelope theorem applied to V(-) to
find the derivative V'(+), namely,

U/(f(kt) — kt+1) = U/(f(kt) — kt+1)f/(kt) (GQ6)

Straightforward interpretation: the value of another unit of
beginning-of-period capital along an optimal path is the marginal utility value
of the extra product the higher capital allows evaluated at the optimal level of
consumption.

Combining (eq.5) and (eq.6), one obtains

u'(ftk) — kua) = Bu'(flkea) — x(kea))f' (ki) (eq.7)
where k(Ki1) = Kyo.

Hence the time-invariant function «(-) giving the optimal level of the control
variable as a funtion of the state, sometimes called the policy function, which
characterize the optimal path.

For many functional forms of u(.) and f(.), it is easy to solve (eq.7) to
obtain a closed form for x(-).

More generally, we can analyze this equation to obtain certain
characteristics of x(-) and hence the optimal path.



