
14.12 Game Theory Lecture Notes 

Lectures 15-18 

1 Dynamic Games with Incomplete Information 

In these lectures, we analyze the issues arise in a dynamics context in the presence of 

incomplete information, such as how agents should interpret the actions the other parties 

take. We define perfect Bayesian Nash equilibrium, and apply it in a sequential bargain-

ing model with incomplete information. As in the games with complete information, 

now we will use a stronger notion of rationality – sequential rationality. 

2 Perfect Bayesian Nash Equilibrium 

Recall that in games with complete information some Nash equilibria may be based on 

the assumption that some players will act sequentially irrationally at certain information 

sets off the path of equilibrium. In those games we ignored these equilibria by focusing 

on subgame perfect equilibria; in the latter equilibria each agent’s action is sequentially 

rational at each information set. Now, we extend this notion to the games with incom-

plete information. In these games, once again, some Bayesian Nash equilibria are based 

on sequentially irrational moves off the path of equilibrium. 

Consider the game in Figure 1. In this game, a firm is to decide whether to hire a 

worker, who can be hard-working (High) or lazy (Low). Under the current contract, if 

the worker is hard-working, then working is better for the worker, and the firm makes 

profit of 1 if the worker works. If the worker’s lazy, then shirking is better for him, and 

the firm will lose 1 if the worker shirks. If the worker is sequentially rational, then he 

will work if he’s hard-working and shirk if he’s lazy. Since the firm finds the worker 
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Figure 1: 

more likely to be hard-working, the firm will hire the worker. But there is another 

Bayesian Nash equilibrium: the worker always shirks (independent of his type), and 

therefore the firm does not hire the worker. This equilibrium is indicated in the figure 

by the bold lines. It is based on the assumption that the worker will shirk when he 

is hard-working, which is sequentially irrational. Since this happens off the path of 

equilibrium, such irrationality is ignored in the Bayesian Nash equilibrium–as in the 

ordinary Nash equilibrium. 

We’ll now require sequential rationality at each information set. Such equilibria 

will be called perfect Bayesian Nash equilibrium. The official definition requires more 

details. 

For each information set, we must specify the beliefs of the agent who moves at that 

information set. Beliefs of an agent at a given information set are represented by a 

probability distribution on the information set. In the game in figure 1, the players’ 

beliefs are already specified. Consider the game in figure 2. In this game we need to 

specify the beliefs of player 2 at the information set that he moves. In the figure, his 

beliefs are summarized by µ, which is the probability that he assigns to the event that 

player 1 played T  given that 2 is asked to move. 

Given a player’s beliefs, we can define sequential rationality: 

Definition 1 A player is said to be sequentially rational iff, at each information set he 

is to move, he maximizes his expected utility given his beliefs at the information set (and 

given that he is at the information set) — even if this information set is precluded by his 
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own strategy. 

In the game of figure 1, sequential rationality requires that the worker works if he 

is hard-working and shirks if he is lazy. Likewise, in the game of figure 2, sequential 

rationality requires that player 2 plays R. 
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Figure 3: 

Now consider the game in figure 3. In this figure, we depict a situation in which 

player 1 plays T while player 2 plays R, which is not rationalizable. Player 2 assigns 

probability .9 to the event that player 1 plays B. Given his beliefs, player 2’s move 

is sequentially rational. Player 1 plays his dominant strategy, therefore his move is 

sequentially rational. The problem with this situation is that player 2’s beliefs are not 
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consistent with player 1’s strategy. In contrast, in an equilibrium a player maximizes 

his expected payoff given the other players’ strategies. Now, we’ll define a concept of 

consistency, which will be required in a perfect Bayesian Nash equilibrium. 

Definition 2 Given any (possibly mixed) strategy profile s, an information set is said to 

be on the path of play iff the information set is reached with positive probability according 

to s. 

Definition 3 (Consistency on the path) Given any strategy profile s and any infor-

mation set I on the path of play of s, a player’s beliefs at I is said to be consistent with 

s iff the beliefs are derived using the Bayes’ rule and s. 

For example, in figure 3, consistency requires that player 2 assigns probability 1 

to the event that player 1 plays T. This definition does not apply off the equilibrium 

path. Consider the game in Figure 4. In this game, after player 1 plays E, there 
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Figure 4: 

is a subgame with a unique rationalizable strategy profile: 2 plays T and 3 plays R. 

Anticipating this, player 1 must play E. Now consider the strategy profile (X,T,L), in 

which player 1 plays X, 2 plays T, and 3 plays L, and assume that, at his information 

set, player 3 assigns probability 1 to the event that 2 plays B. Players’ moves are all 

sequentially rational, but player 3’s beliefs are not consistent with what the other players 

play. Since our definition was valid only for the information sets that are on the path of 

equilibrium, we could not preclude such beliefs. Now, we need to extend our definition 
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of consistency to the information sets that are off the path of equilibrium. The difficulty 

is that the information sets off the path of equilibrium are reached with probability 0 

by definition. Hence, we cannot apply Bayes’ formula to compute the beliefs. To 

check the consistency we might make the players “tremble” a little bit so that every 

information sets is reached with positive probability. We can then apply Bayes rule to 

compute the conditional probabilities for such a perturbed strategy profile. Consistency 

requires that the players’ beliefs must be close to the probabilities that are derived using 

Bayes’ rule for some such small tremble (as the size of the tremble goes to 0). In figure 

4, for any small tremble (for player 1 and 2), the Bayes rule yields a probability close 

to 1 for the event that player 2 plays T. In that case, consistency requires that player 3 

assigns probability 1 to this event. Consistency is required both on and off the 

equilibrium path. 

In the definition of sequential rationality above, the players’ beliefs about the nodes 

of the information set are given but his beliefs about the other players’ play in the 

continuation game are not specified. In order to have an equilibrium, we also need 

these beliefs to be specified consistently with the other players’ strategies. 

Definition 4 A strategy profile is said to be sequentially rational iff, at each in-

formation set, the player who is to move maximizes his expected utility given 

1. his beliefs at the information set, and 

2.	 given that the other players play according to the strategy profile in the continuation 

game (and given that he is at the information set). 

Definition 5 A Perfect Bayesian Nash Equilibrium is a pair (s,b) of strategy profile 

and a set of beliefs such that 

1. s is sequentially rational given beliefs b, and 

2. b is consistent with s. 

The only perfect Bayesian equilibrium in figure 4 is (E,T,R). This is the only subgame 

perfect equilibrium. Note that every perfect Bayesian equilibrium is subgame perfect. 
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3 Examples 

Beer-Quiche Game Consider the game in figure 5. In this game, player one has 

two types: weak or strong. Player 2 thinks that player 1 is strong with probability .9. 

Player 2, who happens to be a bully, wants to fight with player 1 if player 1 is weak and 

would like to avoid a fight if player 1 is strong. Player 1 is about to order his breakfast, 

knowing that player 2 observes what player 1 orders. He prefers beer if he is strong, 

and he prefers quiche if he is weak. He wants to avoid a fight. 
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Figure 5: 

This game has two equilibria. (For each equilibrium there is a continuum of mixed 

strategy equilibria off the path of equilibrium.) First, consider the perfect Bayesian Nash 

equilibrium depicted in figure 6. We need to check two things: sequential rationality 

and consistency. Let us first check that the strategy profile is sequentially rational. 

In his information set on the right, player 2 is sure that player 1 is weak, hence he 

chooses to duel. When he sees that player 1 is having beer for his breakfast he assigns 

probability .9 to the event that player 1 is strong. Hence, his expected payoffs from 

duel is .9 × 1 =  .9, and his expected payoff is .1 otherwise. Therefore, his moves are 

sequentially rational. Now consider the strong type of player 1. If he chooses beer, 

then he gets 3, and if he chooses quiche, then he gets 0. He chooses beer. Now consider 

the weak type. If he chooses beer, he gets 2, while he gets only 1 if he chooses quiche. 

He chooses beer. Therefore, player 1’s moves are sequentially rational. 
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Let’s now check the consistency. The information set after the beer is on the path 

of equilibrium; hence we need to use the Bayes’ rule. The probabilities .9 and .1 are 

indeed computed through Bayes’ rule. The information set after the quiche is off the 

equilibrium path. In this game, any belief off the equilibrium path is consistent. For 

the present belief, which puts probability 1 to the weak type, consider a perturbation in 

which player 1 trembles and orders quiche with probability ε if he is weak, and he does 

not tremble if his strong. Now Bayes’ rule yields ε/ε = 1  as the conditional probability 

of being weak given quiche. Therefore, the players beliefs are consistent, and we have a 

perfect Bayesian Nash equilibrium. 

Note that we have a continuum of equilibria in which player 1 orders beer. After 

the quiche, player 2 assigns equal probabilities to each node and mixes between duel 

and not duel, where the probability of duel is at least .5. Check also that there is a 

perfect Bayesian Nash equilibrium in which player 1 orders quiche independent of this 

type, and player 2 fights when he observes a beer. 

Another example Consider the game in figure 7. sequential rationality requires that 

at the last note in the upper branch player 1 goes down, and at the last node of the 

lower branch player 1 goes across. Moreover, it requires that player 1 goes across at the 

first node of the lower branch. Therefore, player 1 must go across throughout the lower 

branch and go down at the last node of the upper branch at any perfect Bayesian Nash 

equilibrium. We now show that, in any perfect Bayesian Nash equilibrium, the players 
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Figure 7: 

must play mixed strategies at the remaining information sets (i.e., at the first node of 

the upper branch, and at the information set of player 2). Suppose that player 1 goes 

down with probability 1 at the first node on the upper branch. Then, by Bayes’ rule, 

player 2 must assign probability 1 to the lower branch at his information set and must 

go down with probability 1. In that case, it is better for player 1 to go across and get 

5, rather than going down and getting 4 –a contradiction. Therefore, player 1 must 

go across with positive probability at the first node of a upper branch. Now, suppose 

that player 1 goes across with probability 1 at this node. Then by Bayes’ rule, player 2 

must assign probability .9 to the upper branch in his information set. If he goes down, 

he gets 2; if he goes across, he gets .9 × 3 +  .1 × (−5) = 2.2. Then, he must go across 

with probability 1. In that case, player 1 must go down with probability 1 at the node 

at hand–another contradiction. Therefore, player 1 must mix at the present node. In 

order to have this, player 1 must be indifferent between going across and going down. 

Let’s write β for the probability that 2 goes across. For indifference, we must have 

4 = 5 (1 − β) + 3β = 5  − 2β, 

i.e., 

β = 1/2. 

Player 2 must also play a mixed strategy. Since player 2 plays a mixed strategy, he 

must be indifferent. Let’s write µ for the probability he assigns to the upper branch at 

his information set. For indifference, we must have 

2 = 3µ + (1 − µ) (−5) = 8µ − 5, 
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i.e., 

µ = 7/8. 

If player 1 goes across with probability α, then by Bayes’ rule, we must have 

.9α 7 
µ = = 

.9α + .1 8 
, 

hence 

α = 7/9. 

Therefore, there is a unique perfect Bayesian Nash equilibrium as depicted in figure 8. 
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4 Sequential bargaining 

4.1 A one-period model with two types 

We have a seller S with valuation 0 and a buyer B with valuation v. B  knows v, S  does 

not; S believes that v = 2  with probability π, and v = 1  with probability 1 − π. We 

have the following moves. First, S sets a price p ≥ 0. Knowing p, B either buys, yielding 

(p, v − p) (where the first entry is the payoff of the seller), or does not, yielding (0,0). 

The game is depicted in Figure 9. 
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The perfect Bayesian Nash equilibrium is as follows. B buys iff v ≥ p. If p ≤ 1, both 

types buy, and S gets p. If 1 < p  ≤ 2, only H-type buys, and S gets πp. If p >  2, no 

one buys. The expected payoff of S is plotted in Figure 10. S offers 1 if π < 1 
2 , and he 

offers 2 if π > 1 
2 . He is indifferent between the prices 1 and 2 when π = 1/2. 

4.2 A two-period model with two types 

Consider the same buyer and the seller, but allow them to trade at two dates t = 0, 1. 

The moves are as follows. At t = 0, S sets a price p0 ≥ 0. B either buys, yielding 

(p0, v  − p0), or does not. If he does not buy, then at t = 1, S sets another price p1 ≥ 0; 

B either buys, yielding (δp1, δ(v − p1)), or does not, yielding (0,0). 

The equilibrium behavior at t = 1  is the same as above. Let’s write 

µ = Pr(v = 2|history at t = 1). 
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2 , p1 = 2; if µ <  1 1
B buys iff v ≥ p1. If µ >  1
2 , p1 = 1. If µ = 

2 , S is indifferent between 1


and 2. 

Given this, B with v = 1  buys at t = 0  if p0 ≤ 1. Hence, by Bayes’ rule, if p0 > 1, 

µ = Pr(v = 2|p0, t  = 1) ≤ π. 

When π < 1/2, this determines the equilibrium. This is because 

µ = Pr(v = 2|p0, t  = 1) ≤ π < 1/2, 

and thus 

p1 = 1. 

Hence, B with v = 2  buys at t = 0  if 

(2 − p0) ≥ δ(2 − 1) = δ. 

This is true iff 

p0 ≤ 2 − δ. 

Now S has two options: either set p0 = 1  and sell the good with probability 1, yielding 

payoff 1, or set p0 = 2  − δ, and sell to the high-value buyer at t = 0  and sell the low-value 

buyer at t = 1. The former is better, and thus p0 = 1: 

π (2 − δ) + (1 − π) δ = 2π (1 − δ) +  δ < (1 − δ) +  δ = 1. 

Consider the case π > 1/2. In that case, after any price p0 ∈ (2 − δ, 2), the players 

must mix (see the slides). At any p0 > 2 − δ, since B mixes at t = 1, we must have 

µ (p0) =  Pr(v = 2|p0, t  = 1) = 1/2. 

Write β (p0) for the probability that high-value buyer does not buy at price p0. Then, 

by Bayes’ rule, 
β (p0) π 1 

µ (p0) =  
β (p0) π + (1 − π)

=
2 
, 

i.e., 

β (p0) = (1 − π) /π. 
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Since the buyer with v = 2  mixes (i.e., β (p0) ∈ (0, 1)), he must be indifferent towards 

buying at p0. That is, writing γ(p0) =  Pr(p1 = 1|p0), we have 

2 − p0 = δγ(p0) 

i.e., 

γ(p0) = (2 − p0) /δ. 

4.3 A one-period model with continuum of types 

Modify the one-period model above by letting v be distributed uniformly on some interval 

[0, a]. In equilibrium, again B buys at price p iff v ≥ p. S  gets 

U (p) =  p Pr(v ≥ p) =  p(a − p)/a. 

Therefore, S sets 

p = a/2. 

4.4 A two-period model with continuum of types 

Modify the two-period model above by letting v be distributed uniformly on [0, 1]. B  

buys at p0 iff 

v − p0 ≥ δ (v − E [p1|p0]) , (1) 

where E [p1|p0] is the expected value of p1 given p0. This inequality holds iff 

v ≥ 
p0 − E [p1|p0] ≡ a (p0) . 

1 − δ 

Hence, if B does not buy at price p0, S’s posterior belief will be that v is uniformly 

distributed on [0, a  (p0)], in which case he will set the price at t = 1  to 

p1 (p0) =  a (p0) /2 

as shown above. Substituting this into the previous definition we obtain 

a (p0) =  
p0 − δE [p1|p0]

= 
p0 − δa (p0) /2 

,
1 − δ 1 − δ 

i.e., 
p0 

a (p0) =  . 
1 − δ/2 
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(One could obtain this, simply by observing that (1) is an equality when v = a (p0) and 

E [p1|p0] =  a (p0) /2.) Notice that, if S offers p0, in equilibrium, he sells to the types 

v ≥ a (p0) at price p0 (at date t = 0), to the types with a (p0) /2 ≤ v ≤ a (p0) at 

p1 = a (p0) /2 at date 1, and does not sell to the types v < a (p0) /2 at all. His expected 

payoff is 

US (p0) = Pr (v > a (p0)) p0 + δ Pr (p1 ≤ v < a (p0)) p1 

= (1 − a (p0)) p0 + δ (a (p0) /2) (a (p0) /2) 

p0 p0 
= 

µ
1 − 

1 − δ/2 

¶ 

p0 + δ 

µ 

2 − δ 

¶2 

. 

The first order condition yields 

2δp0
0 =  US 

0 (p0) = 1 − 
2p0 

+ 
(2 − δ)2 ,1 − δ/2 

i.e., 
(1 − δ/2)2 

p0 = . 
2 (1 − 3δ/4) 
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